Script 995: SBA Campaign Pacing

Purpose

SBA Campaign Pacing

To Elaborate

The Python script solves the problem of allocating daily budgets to campaigns based on their performance and business rules. It calculates the recommended daily budget for each campaign and determines the budget pacing based on the allocated budget and spend.

Walking Through the Code

  1. The script starts by importing necessary libraries and defining constants.
  2. It checks if the code is running on a server or locally and loads the data source dictionary accordingly.
  3. The input data is assigned to the inputDf variable.
  4. The script performs data preprocessing and calculations to determine the recommended daily budget and budget pacing for each campaign.
  5. The results are stored in the outputDf dataframe.
  6. The script checks for changes in the recommended daily budget, daily budget, budget pacing, and allocation.
  7. If changes are detected, the changed campaigns are stored in the outputDf dataframe.
  8. The outputDf dataframe is printed as a table.

Vitals

  • Script ID : 995
  • Client ID / Customer ID: 1306913420 / 60268008
  • Action Type: Bulk Upload
  • Item Changed: Campaign
  • Output Columns: Account, Campaign, Daily Budget, SBA Allocation, Rec. Daily Budget, SBA Budget Pacing
  • Linked Datasource: M1 Report
  • Reference Datasource: None
  • Owner: Kent Pearce (kpearce@marinsoftware.com)
  • Created by Kent Pearce on 2024-04-24 16:18
  • Last Updated by Kent Pearce on 2024-04-26 20:35
> See it in Action

Python Code

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
##
## name: SBA Campaign Pacing
## description:
##  
## 
## author: 
## created: 2024-04-24
## 

today = datetime.datetime.now(CLIENT_TIMEZONE).date()

# primary data source and columns
inputDf = dataSourceDict["1"]

# output columns and initial values
BULK_COL_ACCOUNT = 'Account'
BULK_COL_CAMPAIGN = 'Campaign'
BULK_COL_DAILY_BUDGET = 'Daily Budget'
BULK_COL_REC_DAILY_BUDGET = 'Rec. Daily Budget'
BULK_COL_SBA_ALLOCATION = 'SBA Allocation'
BULK_COL_SBA_BUDGET_PACING = 'SBA Budget Pacing'
outputDf[BULK_COL_DAILY_BUDGET] = "<<YOUR VALUE>>"
outputDf[BULK_COL_REC_DAILY_BUDGET] = "<<YOUR VALUE>>"
outputDf[BULK_COL_SBA_ALLOCATION] = "<<YOUR VALUE>>"
outputDf[BULK_COL_SBA_BUDGET_PACING] = "<<YOUR VALUE>>"

# user code start here
print(tableize(inputDf.head()))
#


##### Configurable Param #####


MINIMUM_DAILY_BUDGET = 10


##############################


########### START - Local Mode Config ###########
# Step 1: Uncomment download_preview_input flag and run Preview successfully with the Datasources you want
download_preview_input=True
# Step 2: In MarinOne, go to Scripts -> Preview -> Logs, download 'dataSourceDict' pickle file, and update pickle_path below
# pickle_path = ''
pickle_path = '/Users/mhuang/Downloads/pickle/avb_marketing_datasource_dict_1702622906522.pkl'
# Step 3: Copy this script into local IDE with Python virtual env loaded with pandas and numpy.
# Step 4: Run locally with below code to init dataSourceDict


# determine if code is running on server or locally
def is_executing_on_server():
    try:
        # Attempt to access a known restricted builtin
        dict_items = dataSourceDict.items()
        return True
    except NameError:
        # NameError: dataSourceDict object is missing (indicating not on server)
        return False


if is_executing_on_server():
    print("Code is executing on server. Skip init.")
elif len(pickle_path) > 3:
    print("Code is NOT executing on server. Doing init.")
    # load dataSourceDict via pickled file
    import pickle
    dataSourceDict = pickle.load(open(pickle_path, 'rb'))


    # print shape and first 5 rows for each entry in dataSourceDict
    for key, value in dataSourceDict.items():
        print(f"Shape of dataSourceDict[{key}]: {value.shape}")
        # print(f"First 5 rows of dataSourceDict[{key}]:\n{value.head(5)}")


    # set outputDf same as inputDf
    inputDf = dataSourceDict["1"]
    outputDf = inputDf.copy()


    # setup timezone
    import datetime
    # Chicago Timezone is GMT-5. Adjust as needed.
    CLIENT_TIMEZONE = datetime.timezone(datetime.timedelta(hours=-5))


    # import pandas
    import pandas as pd
    import numpy as np


    # other imports
    import re
    import urllib


    # import Marin util functions
else:
   from marin_scripts_utils import tableize, select_changed
   print("Running locally but no pickle path defined. dataSourceDict not loaded.")
   exit(1)
########### END - Local Mode Setup ###########






RPT_COL_CAMPAIGN = 'Campaign'
RPT_COL_DATE = 'Date'
RPT_COL_ACCOUNT = 'Account'
RPT_COL_PUBLISHER_NAME = 'Publisher Name'
RPT_COL_STRATEGY = 'Strategy'
RPT_COL_DAILY_BUDGET = 'Daily Budget'
RPT_COL_CAMPAIGN_STATUS = 'Campaign Status'
RPT_COL_PUB_COST = 'Pub. Cost $'
RPT_COL_CLICKS = 'Clicks'
RPT_COL_CONV = 'Conv.'
RPT_COL_IMPR_SHARE = 'Impr. share %'
RPT_COL_LOST_IMPR_SHARE_BUDGET = 'Lost Impr. Share (Budget) %'
RPT_COL_LOST_IMPR_SHARE_RANK = 'Lost Impr. Share (Rank) %'
RPT_COL_SBA_STRATEGY = 'SBA Strategy'
RPT_COL_SBA_CAMPAIGN_BUDGET = 'SBA Campaign Budget'
RPT_COL_SBA_ALLOCATION = 'SBA Allocation'
RPT_COL_REC_DAILY_BUDGET = 'Rec. Daily Budget'
RPT_COL_SBA_BUDGET_PACING = 'SBA Budget Pacing'
RPT_COL_SBA_TRAFFIC = 'SBA Traffic'
RPT_COL_PROGRAM_END_Date = 'Program End Date'


BULK_COL_ACCOUNT = 'Account'
BULK_COL_CAMPAIGN = 'Campaign'
BULK_COL_DAILY_BUDGET = 'Daily Budget'
BULK_COL_SBA_ALLOCATION = 'SBA Allocation'
BULK_COL_SBA_BUDGET_PACING = 'SBA Budget Pacing'
BULK_COL_REC_DAILY_BUDGET = 'Rec. Daily Budget'


COL_SPEND_FULL_POTENTIAL = 'spend_lookback_full_potential'
COL_SPEND_FULL_POTENTIAL_CAPPED = 'spend_lookback_full_potential_capped'
COL_SPEND_MTD = 'spend_mtd'
COL_SBA_ALLOCATION_NEW_FLOAT = RPT_COL_SBA_ALLOCATION + '_new_float'
COL_SBA_ALLOCATION_NEW = RPT_COL_SBA_ALLOCATION + '_new'
COL_SBA_STRATEGY_BUDGET_REMAINING = 'SBA_Campaign_budget_remaining'
COL_SBA_BUDGET_PACING_NEW = RPT_COL_SBA_BUDGET_PACING + '_new'
COL_BUDGET_REMAINING = 'budget_remaining'
COL_DAILY_BUDGET_NEW = RPT_COL_DAILY_BUDGET + '_new'
COL_REC_DAILY_BUDGET_NEW = RPT_COL_REC_DAILY_BUDGET + '_new'
COL_DAYS_REMAINING= 'weekdays_remaining'
COL_DAYS_TOTAL= 'weekdays_total'
COL_PACING_CALC = 'pacing_calc'


outputDf[BULK_COL_DAILY_BUDGET] = "<<YOUR VALUE>>"


today = datetime.datetime.now(CLIENT_TIMEZONE).date()
print("inputDf shape", inputDf.shape)
print("inputDf dtypes", inputDf.dtypes)


# change back to percent string
if inputDf[RPT_COL_SBA_ALLOCATION].dtype == "float":
    inputDf[RPT_COL_SBA_ALLOCATION] = round(inputDf[RPT_COL_SBA_ALLOCATION] * 100.0, 0).astype(str) + '%'
if inputDf[BULK_COL_SBA_BUDGET_PACING].dtype == "float":
    inputDf[BULK_COL_SBA_BUDGET_PACING] = round(inputDf[BULK_COL_SBA_BUDGET_PACING] * 100.0, 0).astype(str) + '%'


# coerce Program End Date into Date type
inputDf[RPT_COL_PROGRAM_END_Date] = pd.to_datetime(inputDf[RPT_COL_PROGRAM_END_Date], errors='coerce')


inputDf = inputDf.set_index([RPT_COL_SBA_STRATEGY])
group_by_salesforce_item_ID = inputDf.groupby(RPT_COL_SBA_STRATEGY)


# ## Calculate Full-Potential Spend
# * Adjust Historical Spend by _Lost Impression Share due to Budget_ (see [Formula](https://docs.google.com/document/d/1EbCQ5z9Up8TZ6GISEeCaRSB3Fc15vCPCfeIydree23M/edit#bookmark=id.5fsx7jlseze6))
#


adj_ratio = 1 + (inputDf[RPT_COL_LOST_IMPR_SHARE_BUDGET] / (1 - inputDf[RPT_COL_LOST_IMPR_SHARE_BUDGET]))


inputDf[COL_SPEND_FULL_POTENTIAL] = round(inputDf[RPT_COL_PUB_COST] * adj_ratio, 2)


# ## Remove Date Segmentation
# * Calculate MTD Spend


# SUM Series with Date index and only includes current month
def current_month_sum(x):
    x = x.sort_index()
    mtd = x[ (x.index.month == today.month) & (x.values > 0)]
    return mtd.sum()


groupby_cols = [ \
    RPT_COL_SBA_STRATEGY, \
    RPT_COL_STRATEGY, \
    RPT_COL_PUBLISHER_NAME, \
    RPT_COL_ACCOUNT, \
    RPT_COL_CAMPAIGN, \
]




agg_spec = {
    RPT_COL_CAMPAIGN_STATUS: 'last', \
    RPT_COL_DAILY_BUDGET: 'last', \
    RPT_COL_SBA_CAMPAIGN_BUDGET: 'last', \
    RPT_COL_SBA_ALLOCATION: 'last', \
    RPT_COL_REC_DAILY_BUDGET: 'last', \
    RPT_COL_SBA_BUDGET_PACING: 'last', \
    RPT_COL_SBA_TRAFFIC: 'last', \
    RPT_COL_CLICKS: 'sum', \
    RPT_COL_CONV: 'sum', \
    RPT_COL_PUB_COST: 'sum', \
    COL_SPEND_MTD: current_month_sum, \
    COL_SPEND_FULL_POTENTIAL: 'sum', \
    RPT_COL_PROGRAM_END_Date: 'last', \
}


inputDf[COL_SPEND_MTD] = inputDf[RPT_COL_PUB_COST]


df_campaign_agg = inputDf.reset_index() \
                         .set_index(RPT_COL_DATE) \
                         .groupby(groupby_cols) \
                         .agg(agg_spec) \
                         .reset_index() \
                         .set_index(RPT_COL_SBA_STRATEGY)




# ## Only allocate budget for recently trafficking campaigns
# * Exclude Campaigns that are:
# ** not ACTIVE
# ** without spend in lookback period
# ** Program Date is in the past


inactive_campaigns = (df_campaign_agg[RPT_COL_CAMPAIGN_STATUS] != 'Active') & (df_campaign_agg[RPT_COL_PUB_COST] == 0)
expired_campaigns = df_campaign_agg[RPT_COL_PROGRAM_END_Date].notnull() & (df_campaign_agg[RPT_COL_PROGRAM_END_Date] < pd.to_datetime(today))
df_campaign_agg = df_campaign_agg.loc[ ~(inactive_campaigns | expired_campaigns) ]




# ## Calculate Budget Allocation Ratio
# * Cap full potential spend at 2X (don't spend twice as much as before)
# * Compare full potential spend for each campaign to total spend within same SALESFORCE_ITEM_ID budget group


df_campaign_agg[COL_SPEND_FULL_POTENTIAL_CAPPED] = df_campaign_agg \
    .apply(lambda row: min(row[COL_SPEND_FULL_POTENTIAL], 2 * row[RPT_COL_PUB_COST]), axis=1)




# use transform to calculate sum for each SALESFORCE_ITEM_ID and make it available on every row
# note: no need to build aggregate DataFrame and JOIN back to original


df_campaign_agg[COL_SBA_ALLOCATION_NEW_FLOAT] = 100.0 * \
        df_campaign_agg[COL_SPEND_FULL_POTENTIAL_CAPPED] / \
        df_campaign_agg.groupby(RPT_COL_SBA_STRATEGY)[COL_SPEND_FULL_POTENTIAL_CAPPED].transform('sum')


df_campaign_agg[COL_SBA_ALLOCATION_NEW] = round(df_campaign_agg[COL_SBA_ALLOCATION_NEW_FLOAT],0).astype(str) + '%'




#
# ## Calculate Remaining Budget
# * For each SBA Strategy budget group, calculate how much Budget is left by substracting SBA Monthly budget from MTD SALESFORCE_ITEM_ID spend


df_campaign_agg[COL_SBA_STRATEGY_BUDGET_REMAINING] =  \
        df_campaign_agg[RPT_COL_SBA_CAMPAIGN_BUDGET] - \
        df_campaign_agg.groupby(by=[RPT_COL_SBA_STRATEGY])[COL_SPEND_MTD].sum()




# ## Allocate Budget
# * Allocate remaining budget to each campaign according to ratio calculated above


df_campaign_agg[COL_BUDGET_REMAINING] = round(df_campaign_agg[COL_SBA_STRATEGY_BUDGET_REMAINING] * df_campaign_agg[COL_SBA_ALLOCATION_NEW_FLOAT] / 100.0, 1)




# ## Calculate SBA Daily Budget
#
# * Calcualte next day Daily Budget by dividing allocated budget by number of Business Days left in the current month




today_numpy = pd.to_datetime(today).to_numpy().astype('datetime64[D]')
next_month_start = (today_numpy + pd.offsets.BMonthBegin()).to_numpy().astype('datetime64[D]')


# for months ending on weekends, use max(1,x) to avoid dividing by zero
days_left = max(1, (next_month_start - today_numpy).astype('timedelta64[D]').astype(int))


df_campaign_agg[COL_DAYS_REMAINING] = days_left
df_campaign_agg[COL_REC_DAILY_BUDGET_NEW] = round(df_campaign_agg[COL_BUDGET_REMAINING] / days_left, 0)


# ### Apply Minimum Rule
# * Bump allocated budget above minimum


allocated_below_min = (df_campaign_agg[COL_REC_DAILY_BUDGET_NEW] < MINIMUM_DAILY_BUDGET)
df_campaign_agg.loc[allocated_below_min, COL_REC_DAILY_BUDGET_NEW] = MINIMUM_DAILY_BUDGET




# ### Traffic Budget
df_campaign_agg[COL_DAILY_BUDGET_NEW] = np.nan


# campaigns to traffic
to_traffic = df_campaign_agg[RPT_COL_SBA_TRAFFIC].notnull() & \
            (df_campaign_agg[RPT_COL_SBA_TRAFFIC].astype(str).str.lower() == 'traffic')
print("Not weekend. Traffic count", to_traffic.sum())


# copy budgets over
df_campaign_agg[COL_DAILY_BUDGET_NEW] = df_campaign_agg[COL_REC_DAILY_BUDGET_NEW]
# then blank out budget for non-traffic campaigns
df_campaign_agg.loc[~to_traffic, COL_DAILY_BUDGET_NEW] = np.nan




# ## Calculate Salesforece Item ID -level Pacing compliance percentage. Ideally should be 100% each day.


# number of elapsed workdays
current_month_start = pd.to_datetime(today.replace(day=1)).to_numpy().astype('datetime64[D]')
total_days_in_month = (next_month_start - current_month_start).astype('timedelta64[D]').astype(int)
df_campaign_agg[COL_DAYS_TOTAL] = total_days_in_month
prorated_ratio = (total_days_in_month - days_left) / total_days_in_month


print("today", today)
print("current_month_start", current_month_start)
print("next_month_start", next_month_start)
print("weekdays_in_month", total_days_in_month)
print("weekdays_left", days_left)
print("prorated_ratio", prorated_ratio)


# divide MTD spend by prorated total budget
mask = df_campaign_agg[RPT_COL_SBA_CAMPAIGN_BUDGET] > 0
df_campaign_agg[COL_PACING_CALC] = round(100.0 * \
                                    df_campaign_agg.groupby(by=[RPT_COL_SBA_STRATEGY])[COL_SPEND_MTD].sum() / \
                                    (prorated_ratio * df_campaign_agg[RPT_COL_SBA_CAMPAIGN_BUDGET]), \
                                    0).astype(str) + '%'
df_campaign_agg.loc[mask, COL_SBA_BUDGET_PACING_NEW] = df_campaign_agg.loc[mask, COL_PACING_CALC]






# Debug DF with full details
df_SALESFORCE_ITEM_ID_budget = group_by_salesforce_item_ID[[RPT_COL_SBA_CAMPAIGN_BUDGET]].transform('max').dropna().drop_duplicates()
print("Salesforce Item ID budgets", df_SALESFORCE_ITEM_ID_budget.to_string())




# ## Generate outputDf


# Check for changes
changed = df_campaign_agg[COL_REC_DAILY_BUDGET_NEW].notnull() & \
    ( \
       (df_campaign_agg[RPT_COL_REC_DAILY_BUDGET] != df_campaign_agg[COL_REC_DAILY_BUDGET_NEW]) | \
       (df_campaign_agg[RPT_COL_DAILY_BUDGET] != df_campaign_agg[COL_DAILY_BUDGET_NEW]) | \
       (df_campaign_agg[RPT_COL_SBA_ALLOCATION] != df_campaign_agg[COL_SBA_ALLOCATION_NEW]) | \
       (df_campaign_agg[RPT_COL_SBA_BUDGET_PACING] != df_campaign_agg[COL_SBA_BUDGET_PACING_NEW]) \
    )


print("Changed rows:", changed.sum())


# Debug
debugDf = df_campaign_agg.loc[changed] \
      .reset_index() \
      .sort_values(by=[RPT_COL_SBA_STRATEGY, COL_DAILY_BUDGET_NEW, COL_REC_DAILY_BUDGET_NEW], ascending=False)


# print("debugDf", tableize(debugDf))


# Only emit output for changed campaigns
if changed.sum() > 0:


    # construct outputDf
    outputDf = df_campaign_agg.loc[changed, [RPT_COL_ACCOUNT, RPT_COL_CAMPAIGN, COL_DAILY_BUDGET_NEW, COL_REC_DAILY_BUDGET_NEW, COL_SBA_BUDGET_PACING_NEW, COL_SBA_ALLOCATION_NEW]] \
                      .copy() \
                      .rename(columns={ \
                            COL_DAILY_BUDGET_NEW: BULK_COL_DAILY_BUDGET, \
                            COL_REC_DAILY_BUDGET_NEW: BULK_COL_REC_DAILY_BUDGET, \
                            COL_SBA_BUDGET_PACING_NEW: BULK_COL_SBA_BUDGET_PACING, \
                            COL_SBA_ALLOCATION_NEW: BULK_COL_SBA_ALLOCATION, \
                        }) \
                      .reset_index() \
                      .sort_values(by=[RPT_COL_SBA_STRATEGY, BULK_COL_DAILY_BUDGET, BULK_COL_REC_DAILY_BUDGET], ascending=False) \
                      .drop(RPT_COL_SBA_STRATEGY, axis=1)


    print("outputDf shape", outputDf.shape)
    print("outputDf", tableize(outputDf.head()))
else:
    print("No changes detected, returning an empty dataframe")
    outputDf = pd.DataFrame(columns=[BULK_COL_ACCOUNT, BULK_COL_CAMPAIGN, BULK_COL_DAILY_BUDGET, BULK_COL_REC_DAILY_BUDGET, BULK_COL_SBA_BUDGET_PACING, BULK_COL_SBA_ALLOCATION])



Post generated on 2024-05-15 07:44:05 GMT

comments powered by Disqus