Script 819: Campaign Anomalies Amazon Music Global AMU Signups
Purpose
The Python script identifies and reports campaign-level outliers in key conversion metrics, such as Total AMU Sign-Ups, by calculating anomalies using adjustable thresholds.
To Elaborate
The script is designed to detect anomalies in campaign performance metrics, specifically focusing on Total AMU Sign-Ups and Podcast First Stream conversions. It uses statistical methods like Interquartile Range (IQR) and deviation thresholds to identify outliers. The script processes data from the last eight weeks, ensuring that the analysis accounts for conversion lags by generating reports on Thursdays. It filters campaigns to focus on high-traffic ones, using a configurable metric to determine the top campaigns to include in the analysis. The script calculates forecasted values and actuals, compares them to identify deviations, and flags significant anomalies. It also categorizes trends as positive, negative, or mixed, and provides a summary of the most prominent trends by campaign category and country.
Walking Through the Code
- Initialization and Configuration
- The script begins by defining constants and user-configurable parameters, such as the metric for top campaigns and thresholds for anomaly detection.
- It sets up local mode configurations for testing and debugging purposes, allowing the script to run locally with sample data.
- Data Preparation
- The script loads input data and filters it to focus on high-traffic campaigns based on a specified metric and threshold.
- It calculates additional metrics like conversion rate, cost per click, and click-through rate for each campaign.
- Anomaly Detection
- The script aggregates data by campaign and calculates forecasted values using exponential smoothing.
- It computes interquartile ranges and actual values, then calculates deviation ratios and anomaly scores for each metric.
- Campaigns are flagged based on deviation and outlier scores, with scaled scores highlighting larger spenders.
- Trend Analysis and Reporting
- The script identifies campaigns with significant anomalies and categorizes them by trend (positive, negative, mixed).
- It constructs a detailed prompt for generating a summary report, highlighting key trends and metrics.
- The script outputs the results in a structured format, ready for further analysis or reporting.
Vitals
- Script ID : 819
- Client ID / Customer ID: 197178269 / 13095968
- Action Type: Email Report
- Item Changed: None
- Output Columns:
- Linked Datasource: M1 Report
- Reference Datasource: None
- Owner: Michael Huang (mhuang@marinsoftware.com)
- Created by Michael Huang on 2024-03-15 11:22
- Last Updated by Michael Huang on 2024-05-27 22:58
> See it in Action
Python Code
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
##
## name: Conversion Outlier Detection Report with Summary
## description:
## * identify Conversion outliers from key conversion types
## - Total AMU Sign-Ups
## - Podcast First Stream
## * calculate anomaly via adjustable IQR and Deviation Thresholds
## * require weekly report from last 8 weeks, generated on Thur to allow 4 days of conv lag
##
##
## author: Michael S. Huang
## created: 2024-03-15
##
RPT_COL_CLIENT = 'Client'
RPT_COL_CURRENCY = 'Currency'
RPT_COL_CAMPAIGN = 'Campaign'
RPT_COL_DATE = 'Date'
RPT_COL_PUBLISHER = 'Publisher'
RPT_COL_ACCOUNT = 'Account'
RPT_COL_CAMPAIGN_CATEGORY = 'Campaign_Category'
RPT_COL_IMPR = 'Impr.'
RPT_COL_CLICKS = 'Clicks'
RPT_COL_PUB_COST = 'Pub. Cost'
RPT_COL_TOTAL_AMU_SIGNUPS_CONV = 'Total AMU Sign-Ups Conv.'
RPT_COL_PODCAST_FIRST_STREAM_CONV = 'Podcast First Stream Conv.'
RPT_COL_CONV = RPT_COL_TOTAL_AMU_SIGNUPS_CONV
COL_CONV_RATE = 'CVR'
COL_COST_PER_CLICK = 'CPC'
COL_CTR = 'CTR %'
COL_COST_PER_LEAD = 'CPL'
# column names
COL_FORECAST = 'forecast'
COL_ACTUAL = 'actual'
COL_TRAILING = 'trailing'
COL_IQR = 'z_iqr'
COL_DEVIATION = 'z_deviation'
COL_DEVIATION_PCT = 'deviation_pct'
COL_DEVIATION_RATIO = 'z_deviation_ratio'
COL_DEVIATION_RATIO_FLAG_COUNT = COL_DEVIATION_RATIO + '_flagged'
COL_OUTLIER_SCORE = 'z_outlier_score'
COL_OUTLIER_SCORE_FLAG_COUNT = COL_OUTLIER_SCORE + '_flagged'
COL_OUTLIER_DEVIATION_FLAG_COUNT = 'zz_outlier_deviation_flagged'
COL_OUTLIER_DEVIATION_FLAG_COUNT_SCALED = COL_OUTLIER_DEVIATION_FLAG_COUNT + '_scaled'
COL_MOST_UPWARD_OUTLIER_METRIC = 'zz_most_upward_outlier_metric'
COL_MOST_DOWNWARD_OUTLIER_METRIC = 'zz_most_downward_outlier_metric'
COL_TOTAL_FLAG_COUNT_SCALED = 'zz_total_flag_count_scaled'
COL_TRAILING_COST = RPT_COL_PUB_COST + '_' + COL_TRAILING
COL_TREND = 'Trend'
COL_COUNTRY = 'Country'
## NB. Row key columns must be 'mscripts_row_key' for backend to recognize
COL_ROW_KEY = 'mscripts_row_key'
########### START - User Params ###########
# only focus on high traffic campaigns
# note: to use Pub Cost/Revenue, need to currency convert first
TOP_CAMPAIGN_METRIC = RPT_COL_CONV
FRACTION_OF_TOP_CAMPAIGNS_TO_INCLUDE = 0.85
MIN_THRESHOLD_METRIC = RPT_COL_CONV
MIN_THRESHOLD = 10
# lookback window for forecast
MIN_FORECAST_LOOKBACK_WEEKS = 7
# Metrics to include in Report
# Format: (Metric, Outlier Threshold, Deviation Threshold, Forecast Precision)
# Metric = metrics to analyze
# Outlier Threshold: IQR multiplier; 1.5 is equivalent to 97.5% percentile
# Deviation Threshold: deviation threshold (in decimal; 0.20 = 20%)
# Forecast Precison = number of decimal places; 0 for integer
REPORT_METRICS = [
(RPT_COL_CONV, 1.5, 0.20, 0),
(COL_CONV_RATE, 1.5, 0.20, 2),
]
########### END - User Params ###########
########### START - Local Mode Config ###########
# Step 1: Uncomment download_preview_input flag and run Preview successfully with the Datasources you want
download_preview_input=False
# Step 2: In MarinOne, go to Scripts -> Preview -> Logs, download 'dataSourceDict' pickle file, and update pickle_path below
# pickle_path = ''
pickle_path = '/Users/mhuang/Downloads/pickle/amazon_music_anomaly_weekly_20240325.pkl'
# Step 3: Copy this script into local IDE with Python virtual env loaded with pandas and numpy.
# Step 4: Run locally with below code to init dataSourceDict
# determine if code is running on server or locally
def is_executing_on_server():
try:
# Attempt to access a known restricted builtin
dict_items = dataSourceDict.items()
return True
except NameError:
# NameError: dataSourceDict object is missing (indicating not on server)
return False
local_dev = False
if is_executing_on_server():
print("Code is executing on server. Skip init.")
elif len(pickle_path) > 3:
print("Code is NOT executing on server. Doing init.")
local_dev = True
# load dataSourceDict via pickled file
import pickle
dataSourceDict = pickle.load(open(pickle_path, 'rb'))
# print shape and first 5 rows for each entry in dataSourceDict
for key, value in dataSourceDict.items():
print(f"Shape of dataSourceDict[{key}]: {value.shape}")
# print(f"First 5 rows of dataSourceDict[{key}]:\n{value.head(5)}")
# set outputDf same as inputDf
inputDf = dataSourceDict["1"]
outputDf = inputDf.copy()
# setup timezone
import datetime
# Chicago Timezone is GMT-5. Adjust as needed.
CLIENT_TIMEZONE = datetime.timezone(datetime.timedelta(hours=-5))
# import pandas
import pandas as pd
import numpy as np
# other imports
import re
import urllib
# import Marin util functions
# from marin_scripts_utils import tableize, select_changed
# pandas settings
pd.set_option('display.max_columns', None) # Display all columns
pd.set_option('display.max_colwidth', None) # Display full content of each column
else:
print("Running locally but no pickle path defined. dataSourceDict not loaded.")
exit(1)
########### END - Local Mode Setup ###########
########### Anomaly Detection Libray Functions #############
### Forecast and Anomaly functions
# get forecast via simple exponential smoothing
# note: changed to handle weekly not daily data
def get_forecasts(data, decimals=0):
if len(data) >= MIN_FORECAST_LOOKBACK_WEEKS:
# print("data len: ", len(data))
# print("data.index", data.index)
# print("data", data)
# exclude most recent data point
hist_data = data.iloc[:-1]
# exponential smoothing
alpha = 0.5 # smoothing factor
forecasts = hist_data.ewm(alpha=alpha).mean().iloc[-1]
if decimals == 0:
forecasts = forecasts.astype(int)
else:
forecasts = forecasts.round(decimals)
return forecasts
else:
print("not enough data. skipping: ", data.index)
return None
# get interquartile range from previous weeks
def get_inter_quartile_ranges(data):
if len(data) >= MIN_FORECAST_LOOKBACK_WEEKS:
# print("data.index", data.index)
# print("data", data)
# exclude most recent data point
hist_data = data.iloc[:-1]
if np.isnan(hist_data).any():
print("fixing nan in hist_data")
hist_data = hist_data.fillna(0)
# iqrs = np.std(hist_data, axis=0)
# calculate interquartile range (IQR)
Q1 = hist_data.quantile(0.25)
Q3 = hist_data.quantile(0.75)
IQR = Q3 - Q1
return IQR
else:
print("not enough data. skipping: ", data.index)
return None
# most recent data point is the last item
get_actuals = lambda x: x.iloc[[-1]]
# get trailing total
def get_trailing_total(data, window=4):
if len(data) >= window:
index_previous_periods = list(range(-1, -(window+1), -1))
hist_data = data.iloc[index_previous_periods]
return hist_data.sum()
else:
print("not enough data. skipping: ", data.index)
return None
# ### Calculate anomaly score
# calc anomaly score across list of metrics
def calc_anomaly_scores(df, metrics_and_weights):
df = df.copy()
deviation_ratio_list = []
outlier_score_list = []
for (metric, _, _, _) in metrics_and_weights:
forecast = df.loc[:, (metric, COL_FORECAST)]
actual = df.loc[:, (metric, COL_ACTUAL)]
iqr = df.loc[:, (metric, COL_IQR)]
if np.isnan(forecast).any():
print("nan in forecast")
forecast = np.nan_to_num(forecast)
if np.isnan(actual).any():
print("nan in actual")
actual = np.nan_to_num(actual)
if np.isnan(iqr).any():
print("nan in iqr")
iqr = np.nan_to_num(iqr)
# negative deviation when less than forecasted
deviation = np.subtract(actual, forecast)
df.loc[:, (metric, COL_DEVIATION)] = deviation
# when both forecasted and actual values are ZERO, deviation should be ZERO
# when forecasted is ZERO but actual is not, set to 100% deviation
deviation_ratio = np.where(forecast > 0, \
deviation/forecast, \
np.where(actual > 0, 1.0, 0.0))
deviation_ratio_list.append(deviation_ratio)
df.loc[:, (metric, COL_DEVIATION_RATIO)] = deviation_ratio
df.loc[:, (metric, COL_DEVIATION_PCT)] = np.char.add(np.char.mod('%0.0f', deviation_ratio * 100), '%')
# anomaly score is ratio of deviation with Inter Quartile Range; score of 1.5 would be 97.5% percentile
# positive score means exceeding forecast
# if IQR is 0, default anomaly score to 0 so it won't trigger any alerts
score = np.where(abs(iqr) > 0, deviation / iqr, 0.0)
outlier_score_list.append(score)
df.loc[:, (metric, COL_OUTLIER_SCORE)] = score
# flag scores that exceed the anomaly threshold
anomaly_thresholds = np.array([threshold for (_, threshold, _, _) in metrics_and_weights])
scores_stack = np.stack(outlier_score_list, axis=0)
flagged_outlier_score_list = np.where(np.abs(scores_stack) > anomaly_thresholds[:, None], 1, 0)
# sum across metrics and save for output
df[COL_OUTLIER_SCORE_FLAG_COUNT] = np.sum(flagged_outlier_score_list, axis=0)
# flag deviation ratios that exceed the deviation threshold
deviation_thresholds = np.array([threshold for (_, _, threshold, _) in metrics_and_weights])
deviation_ratios_stack = np.stack(deviation_ratio_list, axis=0)
flagged_deviation_ratio_list = np.where(np.abs(deviation_ratios_stack) > deviation_thresholds[:, None], 1, 0)
# sum across metrics and save for output
df[COL_DEVIATION_RATIO_FLAG_COUNT] = np.sum(flagged_deviation_ratio_list, axis=0)
# flag anomalous deviations by combining both flags above
# AND flags in flagged_outlier_score_list and flagged_deviation_ratio_list
# get the count of metrics where both are 1
combined_flags = np.logical_and(flagged_outlier_score_list, flagged_deviation_ratio_list)
df[COL_OUTLIER_DEVIATION_FLAG_COUNT] = np.sum(combined_flags, axis=0)
# scaled score highlights larger spenders with more anomaly or deviation flags
# use trailing clicks as proxy metrics, since this script runs across many currencies and don't want to currency conversion here
trailing_clicks = df.loc[:, (RPT_COL_CLICKS, COL_TRAILING)]
df[COL_TOTAL_FLAG_COUNT_SCALED] = np.round((df[COL_OUTLIER_SCORE_FLAG_COUNT] + df[COL_DEVIATION_RATIO_FLAG_COUNT]) * trailing_clicks, 0)
# another version that highlights larger spenders with anomalous deviation flags
df[COL_OUTLIER_DEVIATION_FLAG_COUNT_SCALED] = np.round(df[COL_OUTLIER_DEVIATION_FLAG_COUNT] * trailing_clicks, 0)
# calc best & worst changes; scale change by outlier score (use absolute value to avoid change sign of deviation)
# Using numpy.nan_to_num to fill in NA
change_score = np.nan_to_num(np.multiply(deviation_ratio_list, np.abs(outlier_score_list)), copy=False)
scores_stack = np.stack(change_score, axis=0)
max_scores = np.maximum.reduce(scores_stack, axis=0)
min_scores = np.minimum.reduce(scores_stack, axis=0)
max_score_indices = np.argmax(scores_stack, axis=0)
min_score_indices = np.argmin(scores_stack, axis=0)
# fill in corresponding metric names
metric_names = [metric for (metric, weight, _, _) in metrics_and_weights]
df[COL_MOST_UPWARD_OUTLIER_METRIC] = [metric_names[idx] if score > 0 else np.nan for (score, idx) in zip(max_scores, max_score_indices)]
df[COL_MOST_DOWNWARD_OUTLIER_METRIC] = [metric_names[idx] if score < 0 else np.nan for (score, idx) in zip(min_scores, min_score_indices)]
# resort columns
df.columns = df.columns.swaplevel(0, 1)
df.sort_index(axis=1, inplace=True)
df.columns = df.columns.swaplevel(1, 0)
df.sort_index(axis=1, inplace=True)
# return everything for debugging
# return (df.sort_values(by=COL_OUTLIER_SCORE_FLAG_COUNT, axis=0, ascending=False), max_scores, min_scores, max_score_indices, min_score_indices)
return df.sort_values(by=COL_OUTLIER_SCORE_FLAG_COUNT, axis=0, ascending=False)
# convert to percentage units with 2 decimal places
def safe_percentage(numerator, denominator):
return np.where(denominator > 0, \
round(numerator / denominator * 100, 2), \
0)
########### END Functions ###########
#### User Starts Here
print('inputDf.info\n',inputDf.info())
min_input_date = min(inputDf[RPT_COL_DATE])
max_input_date = max(inputDf[RPT_COL_DATE])
print(f"Input date range: {min_input_date.date()} to {max_input_date.date()}")
# calculate report coverage date
report_date_start = (pd.to_datetime(max_input_date))
report_date_end = report_date_start + pd.Timedelta(days=6)
print(f"Most recent input date is {max_input_date.date()}. Report Week set to: {report_date_start.date()} to {report_date_end.date()}.")
inputDf_reduced = inputDf \
.reset_index() \
.set_index([RPT_COL_CLIENT, RPT_COL_ACCOUNT, RPT_COL_CAMPAIGN])
# set blank campaign category to Untagged
inputDf_reduced[RPT_COL_CAMPAIGN_CATEGORY] = inputDf_reduced[RPT_COL_CAMPAIGN_CATEGORY].fillna('Untagged')
### Keep only Top Campaigns via configured metric TOP_CAMPAIGN_METRIC (30-day lookback)
# get trailing 30-day total by campaign
agg_func = {
TOP_CAMPAIGN_METRIC: ['sum'],
MIN_THRESHOLD_METRIC: ['sum'],
}
thirty_days_ago = pd.to_datetime(max_input_date - datetime.timedelta(days=30))
df_camp_agg = inputDf_reduced.loc[inputDf_reduced[RPT_COL_DATE] >= thirty_days_ago] \
.groupby([RPT_COL_CLIENT, RPT_COL_ACCOUNT, RPT_COL_CAMPAIGN]) \
.agg(agg_func) \
.droplevel(1, axis=1) \
.sort_values([TOP_CAMPAIGN_METRIC], ascending=False)
metric_subtotal = df_camp_agg[TOP_CAMPAIGN_METRIC].sum()
COL_TOP_CAMPAIGN_METRIC_CUMULATIVE = TOP_CAMPAIGN_METRIC+'_cumulative'
COL_TOP_CAMPAIGN_METRIC_CUMULATIVE_PCT = TOP_CAMPAIGN_METRIC+'_cumulative_pct'
df_camp_agg[COL_TOP_CAMPAIGN_METRIC_CUMULATIVE] = df_camp_agg[TOP_CAMPAIGN_METRIC].cumsum()
df_camp_agg[COL_TOP_CAMPAIGN_METRIC_CUMULATIVE_PCT] = df_camp_agg[COL_TOP_CAMPAIGN_METRIC_CUMULATIVE] / metric_subtotal
top_campaign_metric_cutoff = metric_subtotal * FRACTION_OF_TOP_CAMPAIGNS_TO_INCLUDE
df_top_campaigns = df_camp_agg.loc[ df_camp_agg[COL_TOP_CAMPAIGN_METRIC_CUMULATIVE] <= top_campaign_metric_cutoff ] \
.sort_values([TOP_CAMPAIGN_METRIC], ascending=False)
print(f"For metric '{TOP_CAMPAIGN_METRIC}', trailing 30-day sub-total across all {df_camp_agg.shape[0]:,} campaigns is {round(metric_subtotal):,}. {FRACTION_OF_TOP_CAMPAIGNS_TO_INCLUDE*100}% of it ({round(top_campaign_metric_cutoff):,}) comes from just {df_top_campaigns.shape[0]} campaigns.")
# apply minimum threshold
before_count = df_top_campaigns.shape[0]
df_top_campaigns = df_top_campaigns.loc[df_top_campaigns[MIN_THRESHOLD_METRIC] > MIN_THRESHOLD]
after_count = df_top_campaigns.shape[0]
print(f"Applying min thres of {MIN_THRESHOLD} to {MIN_THRESHOLD_METRIC} trimmed off {before_count-after_count} campaigns")
# actually filter by top campaigns
before_count = inputDf_reduced.shape[0]
inputDf_reduced = inputDf_reduced.loc[df_top_campaigns.index]
after_count = inputDf_reduced.shape[0]
print(f"Applying top campaign critera reduced input row count from {before_count} to {after_count}")
# compute ratio metrics for each date
inputDf_reduced[COL_CONV_RATE] = safe_percentage(inputDf_reduced[RPT_COL_CONV], inputDf_reduced[RPT_COL_CLICKS])
inputDf_reduced[COL_COST_PER_CLICK] = inputDf_reduced[RPT_COL_PUB_COST] / inputDf_reduced[RPT_COL_CLICKS]
inputDf_reduced[COL_CTR] = safe_percentage(inputDf_reduced[RPT_COL_CLICKS], inputDf_reduced[RPT_COL_IMPR])
### Aggregate across Dates for Campaigns; calculate Forecast & Actual values
agg_spec = {
metric: [
(COL_FORECAST, lambda x: get_forecasts(x, decimals=decimals)),
(COL_IQR, get_inter_quartile_ranges),
(COL_ACTUAL, get_actuals)
]
for metric, _, _, decimals in REPORT_METRICS
}
# Now, add the additional keys for RPT_COL_PUB_COST and RPT_COL_CLICKS
agg_spec[RPT_COL_PUB_COST] = agg_spec.get(RPT_COL_PUB_COST, []) + [(COL_TRAILING, get_trailing_total)]
agg_spec[RPT_COL_CLICKS] = agg_spec.get(RPT_COL_CLICKS, []) + [(COL_TRAILING, get_trailing_total)]
df_campaign = inputDf_reduced \
.fillna(0) \
.replace([np.inf, -np.inf], 0) \
.groupby([RPT_COL_CLIENT, RPT_COL_CURRENCY, RPT_COL_CAMPAIGN_CATEGORY, RPT_COL_PUBLISHER, RPT_COL_ACCOUNT, RPT_COL_CAMPAIGN]) \
.agg(agg_spec)
### Compute Anomaly Scores
df_campaign_anomaly = calc_anomaly_scores(df_campaign, REPORT_METRICS)
### Find Outlier Trafficking Accounts and Campaigns
highlight_campaigns = df_campaign_anomaly.loc[ \
(df_campaign_anomaly[COL_OUTLIER_DEVIATION_FLAG_COUNT] > 0)
] \
.sort_values(by=[COL_OUTLIER_DEVIATION_FLAG_COUNT_SCALED], ascending=[False]) \
.reset_index()
print("highlight_campaigns: ", highlight_campaigns.shape[0])
### Add some metadata
# add row key for Deep Links
highlight_campaigns[COL_ROW_KEY] = ['row_' + str(i) + '_key' for i in range(1, len(highlight_campaigns) + 1)]
# parse Country from campaign name
highlight_campaigns[COL_COUNTRY] = highlight_campaigns[RPT_COL_CAMPAIGN].str.split('_', expand=True)[0]
# get list of Countries and Categories for building prompt
categories = highlight_campaigns[RPT_COL_CAMPAIGN_CATEGORY].value_counts().index.tolist()
countries = highlight_campaigns[COL_COUNTRY].value_counts().index.tolist()
### Deterine positive/negative trend count for each section
def get_trend(row):
conv_change = row[(RPT_COL_CONV, COL_DEVIATION)]
cvr_change = row[(COL_CONV_RATE, COL_DEVIATION)]
if conv_change > 0 and cvr_change > 0:
return 'Positive'
elif conv_change < 0 and cvr_change < 0:
return 'Negative'
return 'Mixed'
# set Trend for each campaign
highlight_campaigns[COL_TREND] = highlight_campaigns.apply(get_trend, axis=1)
# get aggregate count
campaign_category_trend_count = highlight_campaigns[[RPT_COL_CAMPAIGN_CATEGORY, COL_TREND]]
campaign_category_trend_count.columns = campaign_category_trend_count.columns.get_level_values(0)
campaign_category_trend_count = campaign_category_trend_count.value_counts().reset_index(name='count')
campaign_category_trend_count = campaign_category_trend_count.sort_values(by=[RPT_COL_CAMPAIGN_CATEGORY, COL_TREND], ascending=False)
country_trend_count = highlight_campaigns[[COL_COUNTRY, COL_TREND]]
country_trend_count.columns = country_trend_count.columns.get_level_values(0)
country_trend_count = country_trend_count.value_counts().reset_index(name='count')
country_trend_count = country_trend_count.sort_values(by=[COL_COUNTRY, COL_TREND], ascending=False)
### Determine the Most Promenent Metric Trend for each section
def determine_trend(highlight_campaigns, section, most_upward_or_downward_metric, trend_name):
trend_data = highlight_campaigns.loc[highlight_campaigns[most_upward_or_downward_metric].notna(), [section, most_upward_or_downward_metric]] \
.value_counts() \
.reset_index()
trend_data[COL_TREND] = trend_name
trend_data.columns = [section, 'metric', 'count', 'trend']
return trend_data
category_trend_up = determine_trend(highlight_campaigns, RPT_COL_CAMPAIGN_CATEGORY, COL_MOST_UPWARD_OUTLIER_METRIC, 'Positive')
category_trend_down = determine_trend(highlight_campaigns, RPT_COL_CAMPAIGN_CATEGORY, COL_MOST_DOWNWARD_OUTLIER_METRIC, 'Negative')
country_trend_up = determine_trend(highlight_campaigns, COL_COUNTRY, COL_MOST_UPWARD_OUTLIER_METRIC, 'Positive')
country_trend_down = determine_trend(highlight_campaigns, COL_COUNTRY, COL_MOST_DOWNWARD_OUTLIER_METRIC, 'Negative')
highlight_category_trend = pd.concat([category_trend_up, category_trend_down], axis=0).sort_values(by=[RPT_COL_CAMPAIGN_CATEGORY, 'metric'])
highlight_country_trend = pd.concat([country_trend_up, country_trend_down], axis=0).sort_values(by=[COL_COUNTRY, 'metric'])
print("highlight_category_trend", highlight_category_trend)
print("highlight_country_trend", highlight_country_trend)
top_count_value_category = highlight_category_trend['count'].max()
most_prominent_metric_trend_for_category = highlight_category_trend[highlight_category_trend['count'] == top_count_value_category]
print("most prominent category trend", most_prominent_metric_trend_for_category)
top_count_value_country = highlight_country_trend['count'].max()
most_prominent_metric_trend_for_country = highlight_country_trend[highlight_country_trend['count'] == top_count_value_country]
print("most prominent country trend", most_prominent_metric_trend_for_country)
### Construct Complete Prompt
def get_anomaly_results_for_prompt_string(df, min_count=1):
if df.empty or len(df) < min_count:
return pd.DataFrame()
else:
df.set_index([RPT_COL_CLIENT, RPT_COL_CAMPAIGN_CATEGORY, RPT_COL_PUBLISHER, RPT_COL_ACCOUNT, RPT_COL_CAMPAIGN, RPT_COL_CURRENCY], inplace=True)
trailing = df.xs(key=COL_TRAILING, level=1, axis=1, drop_level=False).round(0).astype(int)
forecast = df.xs(key=COL_FORECAST, level=1, axis=1, drop_level=False).round(2)
deviation_pct = df.xs(key=COL_DEVIATION_PCT, level=1, axis=1, drop_level=False)
anomaly_score = df.xs(key=COL_OUTLIER_SCORE, level=1, axis=1, drop_level=False).round(2)
other_cols = df[[COL_MOST_UPWARD_OUTLIER_METRIC, COL_MOST_DOWNWARD_OUTLIER_METRIC, COL_TREND, COL_ROW_KEY]]
table = pd.concat([trailing, deviation_pct, forecast, anomaly_score, other_cols], axis=1)
# sorting removes level 1 col name for each column and confuses GPT
# table = table.sort_index(axis=1, level=0)
table = table.reset_index()
# flatten column names
table.columns = ['{}_{}'.format(col[0], col[1]) if col[1] else col[0] for col in table.columns]
# add quotes around column names and values
quoted_column_names = ['"{}"'.format(col) for col in table.columns]
table_str = table.to_string(index=False, header=quoted_column_names, formatters={col: lambda x: f'"{x}"' for col in table.columns})
return table_str
def get_anomaly_results_for_human_dataframe(df):
if df.empty:
return pd.DataFrame()
else:
df.set_index([RPT_COL_CLIENT, RPT_COL_PUBLISHER, RPT_COL_ACCOUNT, RPT_COL_CAMPAIGN, RPT_COL_CAMPAIGN_CATEGORY, COL_COUNTRY, COL_TREND, RPT_COL_CURRENCY], inplace=True)
deviation_pct = df.xs(key=COL_DEVIATION_PCT, level=1, axis=1, drop_level=False)
forecast = df.xs(key=COL_FORECAST, level=1, axis=1, drop_level=False).round(2)
other_cols = df[[COL_ROW_KEY]]
table = pd.concat([deviation_pct, forecast, other_cols], axis=1)
table = table.sort_index(axis=1, level=0)
trailing = df.xs(key=COL_TRAILING, level=1, axis=1, drop_level=False).round(0).astype(int)
table = pd.concat([trailing, table], axis=1)
table = table.reset_index()
table.columns = ['{}_{}'.format(col[0], col[1]) if col[1] else col[0] for col in table.columns]
return table
## Build Prompt
prompt_categories = "\n\n".join(
f'''
using campaigns listed in {category} dataframe, and campaign counts grouped by campaign category and trend, and write a short summary for each trend.
for each trend, provide the count given in the dataframe, and choose up to 3 campaigns with the largest positive or negative deviation in '{RPT_COL_CONV}' and/or '{COL_CONV_RATE}' from baseline.
each bullet point should start with the campaign name ('{RPT_COL_CAMPAIGN}') as link to row key ('{COL_ROW_KEY}') and bolded trailing cost ('{COL_TRAILING_COST}') with currency symbol).
include actual values when explaining percentage deviation ('METRIC_{COL_DEVIATION_PCT}') from baseline value ('METRIC_{COL_FORECAST}') for both '{RPT_COL_CONV}' and '{COL_CONV_RATE}'.
EXAMPLE:
__{category}__
3 campaigns doing better. Examples:
* [My Campaign 1](COL_ROW_KEY) (__£3,439__): __Sign-Ups__ experienced a substantial increase of __+60%__ from baseline of 1,345, and __Sign-Up Conv Rate__ lifted __+17%__ from projection of 3.1%.
* [My Campaign 2](COL_ROW_KEY) (__£2,439__): __Sign-Ups__ experienced a substantial lift of __+30%__ from baseline of 2,345, and __Sign-Up Conv Rate__ improved __+7%__ from projection of 5.1%.
1 campaign facing declines. Examples:
* [My Campaign 3](COL_ROW_KEY) (__£1,439__): __Sign-Ups__ experienced a substantial drop of __-30%__ from baseline of 3,345, and __Sign-Up Conv Rate__ tanked __-27%__ from projection of 4.1%.
2 campaign with mixed trend. Examples:
* [My Campaign 4](COL_ROW_KEY) (__£4,439__): __Sign-Ups__ experienced a substantial increase of __+20%__ from baseline of 2,000, but __Sign-Up Conv Rate__ dropped __-15%__ from projection of 3.7%.
'''
for category in categories
)
dataframe_categories = "\n\n".join(
f'''
DataFrame of "{category}" Campaigns with at least one large anomalous deviation:
[[[
{get_anomaly_results_for_prompt_string(highlight_campaigns.loc[highlight_campaigns[RPT_COL_CAMPAIGN_CATEGORY] == category].head(20))}
]]]
'''
for category in categories
)
prompt_countries = "\n\n".join(
f'''
using campaigns listed in {country} dataframe, and campaign counts grouped by country and trend, and write a short summary for each trend.
use the full country name instead of ISO country code. example: use Japan instead of JP, France instead of FR, Germany instead of DE.
for each trend, provide the count given in the dataframe, and choose up to 3 campaigns with the largest positive or negative deviation in '{RPT_COL_CONV}' and/or '{COL_CONV_RATE}' from baseline.
each bullet point should start with the campaign name ('{RPT_COL_CAMPAIGN}') as link to row key ('{COL_ROW_KEY}') and bolded trailing cost ('{COL_TRAILING_COST}') with currency symbol).
include actual values when explaining percentage deviation ('METRIC_{COL_DEVIATION_PCT}') from baseline value ('METRIC_{COL_FORECAST}') for both '{RPT_COL_CONV}' and '{COL_CONV_RATE}'.
EXAMPLE:
__{country}__
3 campaigns doing really well. Examples:
* [My Campaign 1](COL_ROW_KEY) (__£3,439__): __Sign-Ups__ experienced a substantial increase of __+60%__ from baseline of 1,345, and __Sign-Up Conv Rate__ lifted __+17%__ from projection of 3.1%.
* [My Campaign 2](COL_ROW_KEY) (__£2,439__): __Sign-Ups__ experienced a substantial lift of __+30%__ from baseline of 2,345, and __Sign-Up Conv Rate__ improved __+7%__ from projection of 5.1%.
5 campaign worst than before. Examples:
* [My Campaign 3](COL_ROW_KEY) (__£1,439__): __Sign-Ups__ experienced a substantial drop of __-30%__ from baseline of 3,345, and __Sign-Up Conv Rate__ tanked __-27%__ from projection of 4.1%.
2 campaign with mixed trend. Examples:
* [My Campaign 4](COL_ROW_KEY) (__£4,439__): __Sign-Ups__ experienced a substantial increase of __+20%__ from baseline of 2,000, but __Sign-Up Conv Rate__ dropped __-15%__ from projection of 3.7%.
'''
for country in countries
)
dataframe_countries = "\n\n".join(
f'''
DataFrame of "{country}" Campaigns with at least one large anomalous deviation:
[[[
{get_anomaly_results_for_prompt_string(highlight_campaigns.loc[highlight_campaigns[COL_COUNTRY] == country].head(20))}
]]]
'''
for country in countries
)
emailSummaryPrompt = f'''
You are a helpful pay-per-click marketing data analyst with deep understanding of common performance issues.
{dataframe_categories}
{dataframe_countries}
DataFrame of the Most Prominent Metric Trend in Campaign Category:
[[[
{most_prominent_metric_trend_for_category.head(1).to_string(index=False)}
]]]
DataFrame of the Most Prominent Metric Trend in Country:
[[[
{most_prominent_metric_trend_for_country.head(1).to_string(index=False)}
]]]
DataFrame of Campaign Count Grouped by Campaign Category and Trend:
[[[
{campaign_category_trend_count.to_string(index=False)}
]]]
DataFrame of Campaign Count Grouped by Country and Trend:
[[[
{country_trend_count.to_string(index=False)}
]]]
Interpret above data using these guidelines:
* Refer to '{RPT_COL_CONV}' as 'Sign-Ups'
* Refer to '{COL_CONV_RATE}' as 'Sign-Up Conv Rate'
* '{RPT_COL_CONV + '_' + COL_FORECAST}' is the baseline value for '{RPT_COL_CONV}'.
* '{COL_CONV_RATE + '_' + COL_FORECAST}' is the baseline value for '{COL_CONV_RATE}'.
* '{RPT_COL_CONV + '_' + COL_DEVIATION_PCT}' is the percent deviation from baseline value for '{RPT_COL_CONV}'
* '{COL_CONV_RATE + '_' + COL_DEVIATION_PCT}' is the percent deviation from baseline value for '{COL_CONV_RATE}'
* Positive '{RPT_COL_CONV + '_' + COL_DEVIATION_PCT}' along with positive '{COL_CONV_RATE + '_' + COL_DEVIATION_PCT}' indicates an overall positive trend
* Negative '{RPT_COL_CONV + '_' + COL_DEVIATION_PCT}' along with negative '{COL_CONV_RATE + '_' + COL_DEVIATION_PCT}' indicates an overall negative trend
* Positive '{RPT_COL_CONV + '_' + COL_DEVIATION_PCT}' along with negative '{COL_CONV_RATE + '_' + COL_DEVIATION_PCT}' indicates an overall mixed trend
* Negative '{RPT_COL_CONV + '_' + COL_DEVIATION_PCT}' along with positive '{COL_CONV_RATE + '_' + COL_DEVIATION_PCT}' also indicates an overall mixed trend
* Campaigns are devided into groups via '{RPT_COL_CAMPAIGN_CATEGORY}'. The groups are: {', '.join(categories)}.
Please summarize the weekly Total AMU Signups using a professional tone, using these rules:
* include Campaign Name from column '{RPT_COL_CAMPAIGN}'
* if column '{COL_MOST_UPWARD_OUTLIER_METRIC}' contains name of a metric, summarize the deviation percentage and baseline value for that metric
* if column '{COL_MOST_DOWNWARD_OUTLIER_METRIC}' contains name of a metric, summarize the deviation percentage and baseline value for that metric
Generate output in Markdown, using this format:
# Change Summary for Last Week: {RPT_COL_CONV.replace(' Conv.', '')}
Note: Weekly metrics are from {report_date_start.strftime('%b %d, %Y')} to {report_date_end.strftime('%b %d, %Y')}, inclusive. Change metrics are compared to a recent 4-week baseline.
# write a succint headline ending with an action verb that highlights Most Prominent Metric Trend for Campaign Category ('{RPT_COL_CAMPAIGN_CATEGORY}').
EXAMPLE: # Brand Conv Rate Dives
{prompt_categories}
# write a succint headline ending with an action verb that highlights Most Prominent Metric Trend for for Country ('{COL_COUNTRY}').
EXAMPLE: # US Sign-Ups Retreat
{prompt_countries}
'''
# blank out prompt if there is no actual output
if highlight_campaigns.empty:
emailSummaryPrompt = ''
print(f"Prompt has ({len(emailSummaryPrompt)} chars)")
#### email output
outputDf = get_anomaly_results_for_human_dataframe(highlight_campaigns)
debugDf = highlight_campaigns.reset_index().round(2)
debugDf.columns = ['{}_{}'.format(col[0], col[1]) if col[1] else col[0] for col in debugDf.columns]
print(f"OutputDf has {outputDf.shape[0]} rows")
#### deep link
# viewId: 14788881
config = {
"email_marinone_links": [
{
"index": index + 1,
"view_id": 14968079,
"filters": [f"campaign_name:{campaign_name}"]
}
for index, campaign_name in enumerate(outputDf[RPT_COL_CAMPAIGN])
]
} if not outputDf.empty else {}
# Create the final JSON string by combining all rows
mscripts_output_config = str(config).replace("'", '"')
print(f"mscript_output_config: {mscripts_output_config}")
## local debug
if local_dev:
with open('prompt.txt', 'w') as file:
file.write(emailSummaryPrompt)
print(f"Local Dev: Prompt written to: {file.name}")
output_filename = 'outputDf.csv'
outputDf.to_csv(output_filename, index=False)
print(f"Local Dev: Output written to: {output_filename}")
debug_filename = 'debugDf.csv'
debugDf.to_csv(debug_filename, index=False)
print(f"Local Dev: Debug written to: {debug_filename}")
else:
print("====== Prompt =====")
print(emailSummaryPrompt)
print("===========")
Post generated on 2024-11-27 06:58:46 GMT