Script 817: SBA Budget Staging via GSheets
Purpose
The script automates the process of copying and updating monthly budget allocations from Google Sheets to a structured budget allocation system by matching campaign strategies.
To Elaborate
The Python script is designed to streamline the process of updating monthly budget allocations for campaigns by extracting data from Google Sheets and integrating it into a structured budget allocation system. The script matches campaign strategies from the Google Sheets with those in the system, ensuring that the budget data is accurately transferred and updated. It handles data cleaning, such as removing empty rows and converting budget values to the correct format, and performs a comparison to identify any changes in budget allocations. This ensures that the budget data is current and reflects any updates made by the customer in the Google Sheets.
Walking Through the Code
- Initialization and Setup
- The script begins by determining whether it is running on a server or locally. If running locally, it loads a pickled data source dictionary (
dataSourceDict
) from a specified file path. - It imports necessary libraries such as
pandas
,numpy
, and utility functions frommarin_scripts_utils
.
- The script begins by determining whether it is running on a server or locally. If running locally, it loads a pickled data source dictionary (
- Loading and Preparing Data
- The script constructs a column key to identify the current month’s budget data in the Google Sheets, based on the current date.
- It loads the current month’s budget data from the Google Sheets, skipping the first three rows and renaming columns for consistency.
- The script cleans the budget data by removing rows with empty strategy identifiers and ensuring that budget values are numeric.
- Data Cleaning and Validation
- The input data frame (
inputDf
) is cleaned by converting budget columns to numeric and filling missing values with zeros. - It ensures that the strategy identifiers are strings and filters out invalid entries.
- The input data frame (
- Merging and Comparison
- The script merges the cleaned input data with the current month’s budget data from Google Sheets, filling missing budget values with zeros.
- It uses the
select_changed
function to identify changes in budget allocations, focusing on specific columns for comparison.
- Output and Debugging
- The script outputs the final data frame (
outputDf
) and a debug data frame (debugDf
) to CSV files if running in local development mode. - It provides summary statistics and samples of the output data for verification.
- The script outputs the final data frame (
Vitals
- Script ID : 817
- Client ID / Customer ID: 1306926629 / 60270083
- Action Type: Bulk Upload (Preview)
- Item Changed: Campaign
- Output Columns: Account, Campaign, SBA Campaign Budget
- Linked Datasource: M1 Report
- Reference Datasource: Google Sheets
- Owner: Michael Huang (mhuang@marinsoftware.com)
- Created by Michael Huang on 2024-03-14 21:17
- Last Updated by dwaidhas@marinsoftware.com on 2024-05-30 13:18
> See it in Action
Python Code
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
##
## name: SBA Budget Staging - GSheets - All Campus
## description:
## Copy SBA Budget from staging GSheets for SBA Campaign Budget Pacing
## Use GSheets 'Abbrevation' column to match with 'SBA Strategy'
##
## author: Michael S. Huang
## created: 2024-03-15
##
########### START - Local Mode Config ###########
# Step 1: Uncomment download_preview_input flag and run Preview successfully with the Datasources you want
download_preview_input=False
# Step 2: In MarinOne, go to Scripts -> Preview -> Logs, download 'dataSourceDict' pickle file, and update pickle_path below
# pickle_path = ''
pickle_path = '/Users/mhuang/Downloads/pickle/allcampus_budget_staging_20240315.pkl'
# Step 3: Copy this script into local IDE with Python virtual env loaded with pandas and numpy.
# Step 4: Run locally with below code to init dataSourceDict
# determine if code is running on server or locally
def is_executing_on_server():
try:
# Attempt to access a known restricted builtin
dict_items = dataSourceDict.items()
return True
except NameError:
# NameError: dataSourceDict object is missing (indicating not on server)
return False
local_dev = False
if is_executing_on_server():
print("Code is executing on server. Skip init.")
elif len(pickle_path) > 3:
print("Code is NOT executing on server. Doing init.")
local_dev = True
# load dataSourceDict via pickled file
import pickle
dataSourceDict = pickle.load(open(pickle_path, 'rb'))
# print shape and first 5 rows for each entry in dataSourceDict
for key, value in dataSourceDict.items():
print(f"Shape of dataSourceDict[{key}]: {value.shape}")
print(f"First 5 rows of dataSourceDict[{key}]:\n{value.head(5)}")
# set outputDf same as inputDf
outputDf = dataSourceDict["1"].copy()
# setup timezone
import datetime
CLIENT_TIMEZONE = datetime.timezone(datetime.timedelta(hours=+8))
# import pandas
import pandas as pd
import numpy as np
# import Marin util functions
from marin_scripts_utils import tableize, select_changed
else:
print("Running locally but no pickle path defined. dataSourceDict not loaded.")
exit(1)
########### END - Local Mode Setup ###########
# dial forward to preview next month budgets
# CLIENT_TIMEZONE = datetime.timezone(datetime.timedelta(hours=+8))
# today in client timezone
today = datetime.datetime.now(CLIENT_TIMEZONE).date()
# primary data source and columns
inputDf = dataSourceDict["1"]
RPT_COL_CAMPAIGN = 'Campaign'
RPT_COL_ACCOUNT = 'Account'
RPT_COL_SBA_STRATEGY = 'SBA Strategy'
RPT_COL_SBA_CAMPAIGN_BUDGET = 'SBA Campaign Budget' # monthly budget for budget group specified via SBA Strategy
# reference data source and columns
gSheetsDf = dataSourceDict["2_1"] # gsheets dataframe (first sheet)
# To access 10th row of Column C, use gSheetsDf.loc[10, 'C']
# output columns and initial values
BULK_COL_ACCOUNT = 'Account'
BULK_COL_CAMPAIGN = 'Campaign'
BULK_COL_SBA_CAMPAIGN_BUDGET = 'SBA Campaign Budget'
outputDf[BULK_COL_SBA_CAMPAIGN_BUDGET] = "<<YOUR VALUE>>"
########### User Code Starts Here ###########
### Load Current Month Budgets from GSheets and rename
# For debugging, set arbitrary date
# today = datetime.date(2024, 4, 2)
# Construct column key by mapping current month to canonical column name
# Assume column F is January, G is February, H is March, Q is Dec, etc. In terms of integer months, F=1, G=2, H=3,.., Q=12.
column_key = chr(64 + today.month + 5)
print(f"GSheets column key for current month: {today.strftime(('%B'))} => {column_key}")
# load current month
# - skip first 3 rows via .loc[2:]
# - 'Abbreviation' is column T
# - budgets from January to December are on columns F to Q
current_month_budgets = dataSourceDict['2_1'] \
.loc[2:, ['T', column_key]] \
.rename(columns={ \
'T' : RPT_COL_SBA_STRATEGY, \
column_key : RPT_COL_SBA_CAMPAIGN_BUDGET \
})
print("current_month_budgets.shape", current_month_budgets.shape)
print("current_month_budgets.info", current_month_budgets.info())
print("current_month_budgets first 10 rows", current_month_budgets.head(10))
### cleanup Budget values from GSheets
# remove empty epicorID rows
current_month_budgets = current_month_budgets.loc[current_month_budgets[RPT_COL_SBA_STRATEGY].notnull()]
# make sure SBA Strategy is STR
current_month_budgets[RPT_COL_SBA_STRATEGY] = current_month_budgets[RPT_COL_SBA_STRATEGY].astype(str)
# make sure budget is float; remove prefix if not
# note: can't check for `object` since not imported, so use `0` instead
if current_month_budgets[RPT_COL_SBA_CAMPAIGN_BUDGET].dtype == 'O':
current_month_budgets[RPT_COL_SBA_CAMPAIGN_BUDGET] = current_month_budgets[RPT_COL_SBA_CAMPAIGN_BUDGET] \
.str.replace('US$', '', case=False, regex=False) \
.str.replace('$', '', case=False, regex=False) \
.str.replace(',', '') \
.str.strip() \
.astype(float)
# remove empty budget rows
has_budget_group = current_month_budgets[RPT_COL_SBA_STRATEGY].notnull() & \
(current_month_budgets[RPT_COL_SBA_STRATEGY].str.len() > 3)
has_budget_group_cap = current_month_budgets[RPT_COL_SBA_CAMPAIGN_BUDGET].notnull() & \
(current_month_budgets[RPT_COL_SBA_CAMPAIGN_BUDGET] > 0.5)
current_month_budgets = current_month_budgets.loc[ has_budget_group & has_budget_group_cap]
print("after cleanup gsheets")
print("current_month_budgets.shape", current_month_budgets.shape)
print("current_month_budgets.info", current_month_budgets.info())
print(current_month_budgets.head().to_string())
### Cleanup input
# Convert RPT_COL_EPICORID_MONTHLY_BUDGET to numeric, coercing errors to NaN
inputDf[RPT_COL_SBA_CAMPAIGN_BUDGET] = pd.to_numeric(inputDf[RPT_COL_SBA_CAMPAIGN_BUDGET], errors='coerce')
# Replace NaN values with 0.0 if that's the desired behavior
inputDf[RPT_COL_SBA_CAMPAIGN_BUDGET].fillna(0.0, inplace=True)
### convert SBA Strategy column into string and remove blank or non-numeric rows
inputDf[RPT_COL_SBA_STRATEGY] = inputDf[RPT_COL_SBA_STRATEGY].astype(str)
valid_abbrev = inputDf[RPT_COL_SBA_STRATEGY].str.len() > 3
inputDf = inputDf.loc[valid_abbrev]
print("after cleanup inputDf")
print("inputDf.shape", inputDf.shape)
print("intpuDf.info", inputDf.info())
# fill in missing budget as 0 for comparison later
inputDf = inputDf.fillna(value={RPT_COL_SBA_CAMPAIGN_BUDGET: 0})
# make copy of input for use with select_changed
originalDf = inputDf.copy()
### Merge inputDf with current_month_budgets, and fill in missing budget as 0
mergedDf = inputDf.merge(current_month_budgets, on=RPT_COL_SBA_STRATEGY, how='left', suffixes=('_old', '')) \
.fillna(value={RPT_COL_SBA_CAMPAIGN_BUDGET: 0})
print("mergedDf shape", mergedDf.shape)
print("mergedDf", mergedDf.tail(5).to_string())
outputDf, debugDf = select_changed(mergedDf,
originalDf,
diff_cols=[RPT_COL_SBA_CAMPAIGN_BUDGET],
select_cols=[RPT_COL_ACCOUNT, RPT_COL_CAMPAIGN, RPT_COL_SBA_STRATEGY, RPT_COL_SBA_CAMPAIGN_BUDGET],
merged_cols=[RPT_COL_ACCOUNT, RPT_COL_CAMPAIGN]
)
change_to_zero_budget = (debugDf[RPT_COL_SBA_CAMPAIGN_BUDGET + '_new'] < 1) & \
(debugDf[RPT_COL_SBA_CAMPAIGN_BUDGET + '_orig'] > 1)
print("count of campaigns with budget cleared", sum(change_to_zero_budget))
print("campaigns with budget cleared", tableize(debugDf.loc[change_to_zero_budget].head()))
print("outputDf.shape", outputDf.shape)
print("outputDf sample")
print(tableize(outputDf.tail(10)))
## local debug
if local_dev:
output_filename = 'outputDf.csv'
outputDf.to_csv(output_filename, index=False)
print(f"Local Dev: Output written to: {output_filename}")
debug_filename = 'debugDf.csv'
debugDf.to_csv(debug_filename, index=False)
print(f"Local Dev: Debug written to: {debug_filename}")
Post generated on 2024-11-27 06:58:46 GMT