Script 799: Pacing Pacing Start & End Date

Purpose

The Python script extracts start and end dates from campaign names and updates them in a structured format for further analysis.

To Elaborate

The script is designed to parse campaign names to extract start and end dates, which are then formatted into a standardized ISO format (YYYY-MM-DD). This is particularly useful for campaigns where the dates are embedded within the campaign name itself, often in various formats. The script handles different date formats and optional characters like spaces and parentheses, ensuring robust date extraction. Once extracted, these dates are compared with existing records to identify any changes. The script then updates the records with the new dates if changes are detected, facilitating accurate tracking and reporting of campaign timelines.

Walking Through the Code

  1. Initialization and Setup:
    • The script begins by defining constants for column names used in the input and output data frames.
    • Temporary columns are created in the input data frame to store parsed start and end dates.
  2. Date Extraction Function:
    • A function get_dates_from_campaign_name is defined to extract dates from the campaign name using regular expressions.
    • It attempts to parse dates in both four-digit and two-digit year formats, returning them in ISO format or NaN if parsing fails.
  3. Testing the Function:
    • A test function test_get_dates_from_campaign_name is implemented to ensure the date extraction function works correctly across various campaign name formats.
  4. Parsing and Updating Data:
    • The script iterates over each row in the input data frame, applying the date extraction function to populate the temporary date columns.
    • It identifies campaigns with changed dates by comparing the newly parsed dates with existing ones.
  5. Output Preparation:
    • Only rows with changed dates are selected and copied to the output data frame, with columns renamed appropriately.
    • The script prints the updated data frame or indicates if no changes were detected.

Vitals

  • Script ID : 799
  • Client ID / Customer ID: 1306927731 / 60270139
  • Action Type: Bulk Upload
  • Item Changed: Campaign
  • Output Columns: Account, Campaign, Pacing - Start Date, Pacing - End Date
  • Linked Datasource: M1 Report
  • Reference Datasource: None
  • Owner: ascott@marinsoftware.com (ascott@marinsoftware.com)
  • Created by ascott@marinsoftware.com on 2024-03-13 14:45
  • Last Updated by ascott@marinsoftware.com on 2024-03-13 16:55
> See it in Action

Python Code

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
# Add Dimensions Tag based on Campaign Name
# * `Pacing - Start Date`
# * `Pacing - End Date`
# Example: `Search - Display Campaign & Google Ad Words (2/1/2023 - 1/31/2024)`
#
# Author: Michael S. Huang
# Created: 2023-11-25
#

RPT_COL_CAMPAIGN = 'Campaign'
RPT_COL_ACCOUNT = 'Account'
RPT_COL_PACING_START_DATE = 'Pacing - Start Date'
RPT_COL_PACING_END_DATE = 'Pacing - End Date'
BULK_COL_ACCOUNT = 'Account'
BULK_COL_CAMPAIGN = 'Campaign'
BULK_COL_PACING_START_DATE = 'Pacing - Start Date'
BULK_COL_PACING_END_DATE = 'Pacing - End Date'

outputDf[BULK_COL_PACING_START_DATE] = "<<YOUR VALUE>>"
outputDf[BULK_COL_PACING_END_DATE] = "<<YOUR VALUE>>"

# create temp column to store new dim tag and default to empty
TMP_START_DATE = RPT_COL_PACING_START_DATE + '_'
TMP_END_DATE = RPT_COL_PACING_END_DATE + '_'
inputDf[TMP_START_DATE] = np.nan
inputDf[TMP_END_DATE] = np.nan

# define function to parse out Start Date and End Date from `Campaign` column of row
# output should be in ISO format YYYY-MM-DD
def get_dates_from_campaign_name(row):
    campaign_name = row['Campaign']
    # Updated regex to handle optional spaces, parentheses, and missing closing parenthesis
    date_pattern_full = r'(\d{1,2}/\d{1,2}/\d{2,4})\s*-\s*?(\d{1,2}/\d{1,2}/\d{2,4})'
    match_full = re.search(date_pattern_full, campaign_name)
    if match_full:
        start_date_str, end_date_str = match_full.groups()
        # Try parsing with four-digit year format
        try:
            start_date = datetime.datetime.strptime(start_date_str, '%m/%d/%Y').strftime('%Y-%m-%d')
            end_date = datetime.datetime.strptime(end_date_str, '%m/%d/%Y').strftime('%Y-%m-%d')
        except ValueError:
            # If it fails, try parsing with two-digit year format
            try:
                start_date = datetime.datetime.strptime(start_date_str, '%m/%d/%y').strftime('%Y-%m-%d')
                end_date = datetime.datetime.strptime(end_date_str, '%m/%d/%y').strftime('%Y-%m-%d')
            except ValueError:
                # If both fail, set to NaN
                start_date, end_date = np.nan, np.nan
    else:
        start_date, end_date = np.nan, np.nan
    return start_date, end_date

def test_get_dates_from_campaign_name():
    campaign_formats = [
        "Traffic_Array Variety Show_3/1/2024-3/31/2024",
        "Traffic_Array Variety Show_(3/1/2024-3/31/2024)",
        "Traffic_Array Variety Show_(3/1/2024-3/31/2024",
        "Traffic_Array Variety Show_3/1/2024-3/31/2024)",
        "Traffic_Array Variety Show_3/1/2024 - 3/31/2024",
        "Traffic_Array Variety Show_(3/1/2024 - 3/31/2024)",
        "Traffic_Array Variety Show_(3/1/2024 - 3/31/2024",
        "Traffic_Array Variety Show_3/1/2024 - 3/31/2024)",
        "Traffic_Array Variety Show_3/1/2024- 3/31/2024",
        "Traffic_Array Variety Show_(3/1/2024- 3/31/2024)",
        "Traffic_Array Variety Show_(3/1/2024- 3/31/2024",
        "Traffic_Array Variety Show_3/1/2024- 3/31/2024)",
        "Traffic_Array Variety Show_3/1/2024 -3/31/2024",
        "Traffic_Array Variety Show_(3/1/2024 -3/31/2024)",
        "Traffic_Array Variety Show_(3/1/2024 -3/31/2024",
        "Traffic_Array Variety Show_3/1/2024 -3/31/2024)"
    ]

    expected_result = ('2024-03-01', '2024-03-31')
    for campaign in campaign_formats:
        row = pd.Series({'Campaign': campaign})
        assert get_dates_from_campaign_name(row) == expected_result, f"Test failed for format: {campaign}"

# Run the unit test
test_get_dates_from_campaign_name()

# parse out Start/End Date from Campaign name
for index, row in inputDf.iterrows():
    start_date, end_date = get_dates_from_campaign_name(row)
    inputDf.at[index, TMP_START_DATE] = start_date
    inputDf.at[index, TMP_END_DATE] = end_date

print("inputDf with parsed tags", tableize(inputDf))

# find changed campaigns
changed = ((inputDf[TMP_START_DATE].notnull() & (inputDf[RPT_COL_PACING_START_DATE] != inputDf[TMP_START_DATE])) | \
          (inputDf[TMP_END_DATE].notnull() & (inputDf[RPT_COL_PACING_END_DATE] != inputDf[TMP_END_DATE])))

print("== Campaigns with Changed Tag ==", tableize(inputDf.loc[changed]))

# only select changed rows
cols = [RPT_COL_ACCOUNT, RPT_COL_CAMPAIGN, TMP_START_DATE, TMP_END_DATE]
outputDf = inputDf.loc[ changed, cols ].copy() \
                  .rename(columns = { \
                    TMP_START_DATE: BULK_COL_PACING_START_DATE, \
                    TMP_END_DATE: BULK_COL_PACING_END_DATE \
                  })

if not outputDf.empty:
  print("outputDf", tableize(outputDf))
else:
  print("Empty outputDf")
  outputDf = pd.DataFrame(columns=[BULK_COL_ACCOUNT, BULK_COL_CAMPAIGN, BULK_COL_PACING_START_DATE, BULK_COL_PACING_END_DATE])

Post generated on 2024-11-27 06:58:46 GMT

comments powered by Disqus