Script 747: Pacing Campaign Bulk Sheet
Purpose:
The Python script processes campaign data to adjust daily budgets based on pacing cycles and traffic conditions.
To Elaborate
The script is designed to manage and adjust daily budgets for advertising campaigns based on specific pacing cycles and traffic conditions. It filters out campaigns that have ended and focuses on those with active traffic. The script applies a daily budget adjustment factor for campaigns that are underpacing and nearing the end of their pacing cycle. It ensures that the daily budget does not exceed a recommended threshold and flags budgets that surpass a certain amount. This helps in optimizing the allocation of funds across campaigns to ensure effective spending and pacing.
Walking Through the Code
- Initialization and Data Preparation
- The script begins by clearing the ‘Daily Budget Adjustment Factor’ in the input data frame.
- It retrieves the primary data source and initializes relevant columns for processing.
- Filtering Campaigns
- Campaigns that have ended are excluded from further processing.
- From the remaining campaigns, only those with ‘Traffic’ in the SBA Traffic column are retained.
- Budget Adjustment Logic
- The script sets the daily budget to an empty string if the recommended daily budget is less than $200.
- It introduces a new logic for adjusting the daily budget based on the remaining days in the pacing cycle and underpacing status.
- The adjustment factor is applied to the daily budget for campaigns meeting specific criteria.
- Final Adjustments and Output
- The daily budget column is converted to a numeric format to ensure proper calculations.
- A ‘Daily Budget Alert’ is configured to flag budgets exceeding $200.
- The final filtered data frame is renamed with appropriate column names and prepared for output.
Vitals
- Script ID : 747
- Client ID / Customer ID: 1306927167 / 60270139
- Action Type: Bulk Upload
- Item Changed: Campaign
- Output Columns: Account, Campaign, Daily Budget, Daily Budget Alert, Daily Budget Adjustment Factor
- Linked Datasource: M1 Report
- Reference Datasource: None
- Owner: ascott@marinsoftware.com (ascott@marinsoftware.com)
- Created by ascott@marinsoftware.com on 2024-03-06 20:26
- Last Updated by Jesus Garza on 2024-09-12 17:17
> See it in Action
Python Code
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
## name: Pacing - Campaign Bulk Sheet
## description:
##
##
## author: Jesus Garza
## created: 2024-07-03
## 7/1 Updated version with Daily Budget Adjustment Factor
# Step 1: Clear the 'Daily Budget Adjustment Factor'
inputDf['Daily Budget Adjustment Factor'] = np.nan
today = datetime.datetime.now().date() # Removed CLIENT_TIMEZONE for simplicity
# primary data source and columns
inputDf = dataSourceDict["1"]
RPT_COL_CAMPAIGN = 'Campaign'
RPT_COL_ACCOUNT = 'Account'
RPT_COL_AUTO_PACING_CYCLE_START_DATE = 'Auto. Pacing Cycle Start Date'
RPT_COL_AUTO_PACING_CYCLE_END_DATE = 'Auto. Pacing Cycle End Date'
RPT_COL_AUTO_PACING_CYCLE_DAYS_ELAPSED = 'Auto. Pacing Cycle Days Elapsed'
RPT_COL_AUTO_PACING_CYCLE_DAYS_REMAINING = 'Auto. Pacing Cycle Days Remaining'
RPT_COL_AUTO_PACING_CYCLE_PACING = 'Auto. Pacing Cycle Pacing'
RPT_COL_AUTO_PACING_CYCLE_THRESHOLD = 'Auto. Pacing Cycle Threshold'
RPT_COL_TOTAL_TARGET_SPEND_PER_IMPRVIEWS = 'Total Target (Spend/Impr./Views)'
RPT_COL_TOTAL_DAYS = 'Total Days'
RPT_COL_TOTAL_DAYS_ELAPSED = 'Total Days Elapsed'
RPT_COL_TOTAL_PACING = 'Total Pacing'
RPT_COL_DELIVERY_STATUS = 'Delivery Status'
RPT_COL_RECOMMENDED_DAILY_BUDGET = 'Recommended Daily Budget'
RPT_COL_DAILY_BUDGET = 'Daily Budget'
RPT_COL_PACING_CALCULATION_DATE = 'Pacing Calculation Date'
RPT_COL_SOCIAL_BUDGET = 'Social Budget'
RPT_COL_SOCIAL_BUDGET_UPDATE_STATUS = 'Social Budget Update Status'
RPT_COL_AUTO_PACING_CYCLE_PUB_COST = 'Auto. Pacing Cycle Pub. Cost'
RPT_COL_AUTO_PACING_CYCLE_IMPR = 'Auto. Pacing Cycle Impr.'
RPT_COL_AUTO_PACING_CYCLE_CLICKS = 'Auto. Pacing Cycle Clicks'
RPT_COL_AUTO_PACING_CYCLE_VIEWS = 'Auto. Pacing Cycle Views'
RPT_COL_SBA_TRAFFIC = 'SBA Traffic'
RPT_COL_DAILY_BUDGET_ALERT = 'Daily Budget Alert'
# output columns
BULK_COL_ACCOUNT = 'Account'
BULK_COL_CAMPAIGN = 'Campaign'
BULK_COL_DAILY_BUDGET = 'Daily Budget'
BULK_COL_DAILY_BUDGET_ADJUSTMENT_FACTOR = 'Daily Budget Adjustment Factor'
BULK_COL_DAILY_BUDGET_ALERT = 'Daily Budget Alert'
# First filter: Exclude campaigns with 'Campaign Ended'
campaigns_not_ended = inputDf[inputDf[RPT_COL_AUTO_PACING_CYCLE_THRESHOLD] != 'Campaign Ended'].copy()
# Second filter: From the remaining, only include those where SBA Traffic is 'Traffic'
filteredDf = campaigns_not_ended[campaigns_not_ended[RPT_COL_SBA_TRAFFIC] == 'Traffic'].copy()
# Apply necessary operations on filteredDf
filteredDf[RPT_COL_DAILY_BUDGET] = np.where(filteredDf[RPT_COL_RECOMMENDED_DAILY_BUDGET] >= 200, "", filteredDf[RPT_COL_RECOMMENDED_DAILY_BUDGET])
# Add the new logic for Daily Budget Adjustment Factor
# Ensure the column exists before setting values
if BULK_COL_DAILY_BUDGET_ADJUSTMENT_FACTOR not in filteredDf.columns:
filteredDf[BULK_COL_DAILY_BUDGET_ADJUSTMENT_FACTOR] = np.nan
# Now you can safely set the value
filteredDf.loc[(filteredDf[RPT_COL_AUTO_PACING_CYCLE_DAYS_REMAINING] <= 5) &
(filteredDf[RPT_COL_AUTO_PACING_CYCLE_THRESHOLD] == 'Underpacing'),
BULK_COL_DAILY_BUDGET_ADJUSTMENT_FACTOR] = 0.05
# Apply the Daily Budget Adjustment Factor to the Daily Budget column
filteredDf.loc[filteredDf[BULK_COL_DAILY_BUDGET_ADJUSTMENT_FACTOR].notnull(),
RPT_COL_DAILY_BUDGET] = filteredDf.loc[filteredDf[BULK_COL_DAILY_BUDGET_ADJUSTMENT_FACTOR].notnull(),
RPT_COL_DAILY_BUDGET] * (1 + filteredDf[BULK_COL_DAILY_BUDGET_ADJUSTMENT_FACTOR])
# Convert the 'RPT_COL_DAILY_BUDGET' column to numeric
filteredDf[RPT_COL_DAILY_BUDGET] = pd.to_numeric(filteredDf[RPT_COL_DAILY_BUDGET], errors='coerce')
# Configured 'Daily Budget Alert' and set to 'Flagged' for daily budgets exceeding $200
filteredDf[BULK_COL_DAILY_BUDGET_ALERT] = filteredDf.apply(
lambda row: 'Checked' if row[RPT_COL_DAILY_BUDGET_ALERT] == 'Checked' else 'Flagged' if row[RPT_COL_RECOMMENDED_DAILY_BUDGET] > 200 else '', axis=1)
# Assign the final filtered DataFrame to outputDf with correct column names
outputDf = filteredDf.rename(columns={
RPT_COL_ACCOUNT: BULK_COL_ACCOUNT,
RPT_COL_CAMPAIGN: BULK_COL_CAMPAIGN,
RPT_COL_DAILY_BUDGET: BULK_COL_DAILY_BUDGET,
BULK_COL_DAILY_BUDGET_ADJUSTMENT_FACTOR: BULK_COL_DAILY_BUDGET_ADJUSTMENT_FACTOR,
BULK_COL_DAILY_BUDGET_ALERT: BULK_COL_DAILY_BUDGET_ALERT
})
# Assuming you want to display or utilize outputDf
print(outputDf)
Post generated on 2025-03-11 01:25:51 GMT