Script 711: Ad Group CPA Performance Outlier
Purpose:
The Python script identifies ad groups within campaigns that have abnormally high Cost Per Acquisition (CPA) performance, tagging them as outliers.
To Elaborate
The script is designed to analyze advertising data and identify ad groups within campaigns that exhibit unusually high CPA performance. It processes data over a 30-day period, excluding the most recent three days to account for conversion lag. The script aggregates key metrics such as publication cost, conversions, revenue, and clicks for each ad group within a campaign. It then calculates performance features like cost per conversion, return on ad spend (ROAS), conversion rate, and average cost per click (CPC). Using statistical methods, specifically the Interquartile Range (IRQ), the script identifies outliers in CPA performance. Ad groups with CPA significantly higher than the campaign average are tagged as anomalies, allowing marketers to focus on optimizing these underperforming segments.
Walking Through the Code
- Data Preparation
- The script begins by defining a 30-day lookback period, excluding the last three days to mitigate conversion lag.
- It filters the input data to include only relevant columns and aggregates metrics like publication cost, conversions, revenue, and clicks for each ad group within a campaign.
- Rows without cost or conversions are removed to ensure meaningful analysis.
- Feature Calculation
- The script calculates several performance metrics: cost per conversion, ROAS, conversion rate, and average CPC.
- These metrics are essential for identifying anomalies in ad group performance.
- Anomaly Detection
- The script defines functions to detect anomalies using statistical methods like IRQ.
- It checks each feature for outliers, calculating upper and lower bounds based on IRQ thresholds.
- Ad groups with CPA above the calculated threshold are flagged as outliers.
- Outlier Identification
- For each campaign, the script identifies ad groups with CPA significantly higher than the campaign average.
- It tags these outliers with a descriptive message indicating their CPA performance relative to the campaign average.
- Output Preparation
- The script compiles the identified anomalies into a DataFrame, ready for output.
- It prints the results in a table format for easy review and further action.
Vitals
- Script ID : 711
- Client ID / Customer ID: 636182884 / 68766
- Action Type: Bulk Upload (Preview)
- Item Changed: AdGroup
- Output Columns: Account, Campaign, Group, AUTOMATION - Outlier
- Linked Datasource: M1 Report
- Reference Datasource: None
- Owner: dwaidhas@marinsoftware.com (dwaidhas@marinsoftware.com)
- Created by dwaidhas@marinsoftware.com on 2024-02-22 17:39
- Last Updated by dwaidhas@marinsoftware.com on 2024-03-20 21:26
> See it in Action
Python Code
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
##
## name: Ad Group CPA Performance Outlier
## description: Tag AdGroup if CPA performance is abnormally high within Campaign
##
##
## author: Dana Waidhas
## created: 2024-02-22
##
RPT_COL_DATE = 'Date'
RPT_COL_GROUP = 'Group'
RPT_COL_PUBLISHER = 'Publisher'
RPT_COL_ACCOUNT = 'Account'
RPT_COL_CAMPAIGN = 'Campaign'
RPT_COL_GROUP_ID = 'Group ID'
RPT_COL_PUB_COST = 'Pub. Cost $'
RPT_COL_COST_PER_CONV = 'Cost/Conv. $'
RPT_COL_ROAS = 'ROAS'
RPT_COL_CONV_RATE = 'Conv. Rate %'
RPT_COL_AVG_CPC = 'Avg. CPC $'
RPT_COL_IMPR = 'Impr.'
RPT_COL_CLICKS = 'Clicks'
RPT_COL_CONV = 'Conv.'
RPT_COL_REVENUE = 'Revenue $'
BULK_COL_ACCOUNT = 'Account'
BULK_COL_CAMPAIGN = 'Campaign'
BULK_COL_GROUP = 'Group'
BULK_COL_AUTOMATION_OUTLIER = 'AUTOMATION - Outlier'
outputDf[BULK_COL_AUTOMATION_OUTLIER] = numpy.nan
## Data Prep
print(inputDf[RPT_COL_DATE].min(), inputDf[RPT_COL_DATE].max())
# 30-day lookback without most recent 3 days due to conversion lag
start_date = pd.to_datetime(datetime.date.today() - datetime.timedelta(days=33))
end_date = pd.to_datetime(datetime.date.today() - datetime.timedelta(days=3))
df_reduced = inputDf[ (inputDf[RPT_COL_DATE] >= start_date) & (inputDf[RPT_COL_DATE] <= end_date) ]
if (df_reduced.shape[0] > 0):
print("reduced dates\\n", min(df_reduced[RPT_COL_DATE]), max(df_reduced[RPT_COL_DATE]))
else:
print("no more input to process")
# reduce to needed columns
df_reduced = df_reduced[[RPT_COL_ACCOUNT, RPT_COL_CAMPAIGN, RPT_COL_GROUP, RPT_COL_DATE, RPT_COL_PUB_COST, RPT_COL_CONV, RPT_COL_REVENUE, RPT_COL_CLICKS]].copy()
# sum metrics across dates for numerical columns only
agg_columns = {RPT_COL_PUB_COST: 'sum', RPT_COL_CONV: 'sum', RPT_COL_REVENUE: 'sum', RPT_COL_CLICKS: 'sum'}
df_group_perf = df_reduced.groupby([RPT_COL_ACCOUNT, RPT_COL_CAMPAIGN, RPT_COL_GROUP]).agg(agg_columns)
# remove rows without cost or conversions
df_group_perf = df_group_perf[(df_group_perf[RPT_COL_CONV] > 0) & (df_group_perf[RPT_COL_PUB_COST] > 0)]
# index by campaign
df_group_perf = df_group_perf.reset_index().set_index([RPT_COL_ACCOUNT, RPT_COL_CAMPAIGN]).sort_index()
# calculate features
df_group_perf[RPT_COL_COST_PER_CONV] = (df_group_perf[RPT_COL_PUB_COST] / df_group_perf[RPT_COL_CONV])
df_group_perf[RPT_COL_ROAS] = df_group_perf[RPT_COL_REVENUE] / df_group_perf[RPT_COL_PUB_COST]
df_group_perf[RPT_COL_CONV_RATE] = df_group_perf[RPT_COL_CONV] / df_group_perf[RPT_COL_CLICKS]
df_group_perf[RPT_COL_AVG_CPC] = (df_group_perf[RPT_COL_PUB_COST] / df_group_perf[RPT_COL_CLICKS])
## Define Anomaly Fuctions
# Finds anomalies using a certain function (e.g. sigma rule, IRQ etc.)
# data: DataFrame
# Dataset with features
# func: func
# Function to use to find anomalies
# features: list
# Feature list
# thresh: int
# Threshold value (e.g. 2/3 * sigma, 2/3 * IRQ)
# Returns: tuple
def get_feature_anomalies(data, func, features=None, thresh=3):
if features:
features_to_check = features
else:
features_to_check = data.columns
outliers_over = pd.Series(data=[False] * data.shape[0], index=data[features_to_check].index, name='is_outlier')
outliers_under = pd.Series(data=[False] * data.shape[0], index=data[features_to_check].index, name='is_outlier')
anomalies_summary = {}
for feature in features_to_check:
anomalies_mask_over, anomalies_mask_under, upper_bound, lower_bound = func(data, feature, thresh=thresh)
anomalies_mask_combined = pd.concat([anomalies_mask_over, anomalies_mask_under], axis=1).any(axis=1)
anomalies_summary[feature] = [upper_bound, lower_bound, sum(anomalies_mask_combined), 100*sum(anomalies_mask_combined)/len(anomalies_mask_combined)]
outliers_over[anomalies_mask_over[anomalies_mask_over].index] = True
outliers_under[anomalies_mask_under[anomalies_mask_under].index] = True
# print("anomalies_mask_combined: ", anomalies_mask_combined)
# print("Outliers: ", outliers)
anomalies_summary = pd.DataFrame(anomalies_summary).T
anomalies_summary.columns=['upper_bound', 'lower_bound', 'anomalies_count', 'anomalies_percentage']
anomalies_ration = round(anomalies_summary['anomalies_percentage'].sum(), 2)
# print(f'Total Outliers Ration: {anomalies_ration} %')
return anomalies_summary, outliers_over, outliers_under
# Finds outliers/anomalies using IRQ
# data: DataFrame
# col: str
# thresh: int
# Number of IRQ to apply
# Returns: Series
# Boolean Series Mask of outliers
def is_anomaly_irq(data, col, thresh):
IRQ = data[col].quantile(0.66) - data[col].quantile(0.33)
upper_bound = data[col].quantile(0.66) + (thresh * IRQ)
lower_bound = data[col].quantile(0.33) - (thresh * IRQ)
# print("IRQ calc: ", col, IRQ, upper_bound, lower_bound)
# anomalies_mask = pd.concat([data[col] > upper_bound, data[col] < lower_bound], axis=1).any(1)
anomalies_mask_over = data[col] > upper_bound
anomalies_mask_under = data[col] < lower_bound
# print("Anomalies mask: ", (anomalies_mask_over, anomalies_mask_under))
return anomalies_mask_over, anomalies_mask_under, upper_bound, lower_bound
def find_peer_anomaly(df_slice, features, irq_threshold=1.8, outliers_desired=(True, True)):
(want_outliers_over, want_outliers_under) = outliers_desired
if (df_slice.shape[0] < 3):
return
idx = df_slice.index.unique()
df_slice.reset_index(inplace=True)
anomalies_summary_irq, outlier_over_irq, outlier_under_irq = get_feature_anomalies( \
df_slice, \
func=is_anomaly_irq, \
features=features, \
thresh=irq_threshold)
median_cost = df_slice[RPT_COL_PUB_COST].median()
# print(f"over: {outlier_over_irq}")
# print("under: {outlier_under_irq}")
# include over/under outliers as desired
is_outlier_irq = np.logical_or(
np.logical_and(want_outliers_over, outlier_over_irq),
np.logical_and(want_outliers_under, outlier_under_irq)
)
# print("is_outlier\\n", is_outlier_irq)
# ignore anomaly from low spend adgroups (greater than campaign median)
is_outlier_irq = np.logical_and(is_outlier_irq, df_slice[RPT_COL_PUB_COST] > median_cost)
if sum(is_outlier_irq) > 0:
print(">>> ANOMALY", idx)
print(anomalies_summary_irq)
cols = [RPT_COL_GROUP, RPT_COL_PUB_COST, RPT_COL_CONV, RPT_COL_REVENUE] + features
print(df_slice.loc[is_outlier_irq, cols])
return is_outlier_irq
## Find CPA Anomalies
print("input shape:", df_group_perf.shape)
df_anomalies = pd.DataFrame(columns=[RPT_COL_ACCOUNT, RPT_COL_CAMPAIGN, RPT_COL_GROUP, BULK_COL_AUTOMATION_OUTLIER])
# annotate via Marin Dimensions
def rowFunc(row):
return 'CPA ${:,.2f} is much higher than campaign avg ${:,.2f}'.format(
row[RPT_COL_COST_PER_CONV], \
row[RPT_COL_COST_PER_CONV + '_median']
)
for campaign_idx in df_group_perf.index.unique():
df_campaign = df_group_perf.loc[[campaign_idx]].copy()
df_campaign[RPT_COL_COST_PER_CONV + '_median'] = df_campaign[RPT_COL_COST_PER_CONV].mean()
df_campaign[BULK_COL_AUTOMATION_OUTLIER] = np.nan
outliers = find_peer_anomaly(df_campaign, [RPT_COL_COST_PER_CONV], irq_threshold=2, outliers_desired=(True,False))
if outliers is not None and sum(outliers) > 0:
df_outliers = df_campaign.loc[outliers].copy()
df_outliers[BULK_COL_AUTOMATION_OUTLIER] = df_outliers.apply(rowFunc, axis=1)
print(df_outliers)
df_anomalies = pd.concat([df_anomalies, df_outliers], axis=0)
## Prepare Output
print(tableize(df_anomalies))
outputDf = df_anomalies[[RPT_COL_ACCOUNT, RPT_COL_CAMPAIGN, RPT_COL_GROUP, BULK_COL_AUTOMATION_OUTLIER]]
Post generated on 2025-03-11 01:25:51 GMT