Script 683: Dimension Value From Campaign Name

Purpose:

The Python script extracts pacing dates and goals from campaign names in a dataset to enhance structured budget allocation.

To Elaborate

The script is designed to process a dataset containing campaign information, specifically focusing on extracting pacing start and end dates, as well as the goal from the campaign names. This extraction is crucial for structured budget allocation (SBA) as it helps in organizing and managing campaign budgets effectively. The script uses regular expressions to identify date patterns and goal keywords within the campaign names, allowing for flexible handling of various formats and delimiters. By converting these extracted strings into usable date formats and categorizing goals, the script ensures that campaigns with missing or incomplete pacing information can be updated, thereby improving the accuracy and efficiency of budget allocation processes.

Walking Through the Code

  1. Date Conversion Function:
    • The script defines a function convert_date to handle date strings, accommodating both four-digit and two-digit year formats. This ensures robust date parsing from campaign names.
  2. Information Extraction Function:
    • The extract_info_from_campaign_name_enhanced function uses regular expressions to identify date ranges and goal segments within campaign names. It categorizes goals based on specific keywords like ‘CPM’ and ‘MS’, ensuring accurate extraction.
  3. Data Preparation:
    • The script renames columns in the input DataFrame to match expected names and drops unnecessary columns. It cleans column names to remove any leading or trailing spaces.
  4. Filtering and Processing:
    • It filters rows where the ‘Goal’ column is blank and processes each row to extract pacing dates and goals using the defined functions. The extracted information is added to the DataFrame.
  5. Output Preparation:
    • The script filters the DataFrame to include only rows with valid extracted information and selects specific columns for the output DataFrame. It prints the output to verify the extracted data.

Vitals

  • Script ID : 683
  • Client ID / Customer ID: 1306927175 / 60270139
  • Action Type: Bulk Upload
  • Item Changed: Campaign
  • Output Columns: Account, Campaign, Goal, Pacing - End Date, Pacing - Start Date
  • Linked Datasource: M1 Report
  • Reference Datasource: None
  • Owner: ascott@marinsoftware.com (ascott@marinsoftware.com)
  • Created by ascott@marinsoftware.com on 2024-02-08 20:02
  • Last Updated by Jesus Garza on 2024-07-08 23:05
> See it in Action

Python Code

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
## Updated version w/o 'Target (Impr/Spend/Views)'
## name: Dimension Tags from Campaign Name
## description: Extracts pacing dates and goal from campaign name
## author: 
## created: 2023-12-04

# Column Definitions
RPT_COL_CAMPAIGN = 'Campaign'
RPT_COL_ACCOUNT = 'Account'
RPT_COL_PACING_START_DATE = 'Pacing - Start Date'
RPT_COL_PACING_END_DATE = 'Pacing - End Date'
RPT_COL_GOAL = 'Goal'

# Function to convert date with enhanced logic to handle two-digit years
def convert_date(date_str):
    if date_str is None:
        return None
    try:
        # Try to parse date with four-digit year
        return datetime.datetime.strptime(date_str, '%m/%d/%Y').date()
    except ValueError:
        try:
            # Try to parse date with two-digit year
            return datetime.datetime.strptime(date_str, '%m/%d/%y').date()
        except ValueError:
            return None

# Function to extract information from the campaign name with enhanced logic
def extract_info_from_campaign_name_enhanced(campaign_name):
    # Updated date pattern to handle various delimiters and formats
    date_pattern = r'\(?(\d{1,2}/\d{1,2}/\d{2,4})[-\s_]+(\d{1,2}/\d{1,2}/\d{2,4})\)?'
    goal_pattern = r'(Search|RGD|SGD|SBD|CPM|MS)'
    
    date_match = re.search(date_pattern, campaign_name)
    goal_match = re.search(goal_pattern, campaign_name)
    
    start_date_str, end_date_str = (date_match.groups() if date_match else (None, None))
    goal_segment = goal_match.group(1) if goal_match else None
    
    if 'CPM' in campaign_name:
        goal = 'CPM'
    elif 'MS' in campaign_name:
        goal = 'MS'
    else:
        goal = 'MS' if goal_segment and 'Search' in goal_segment else 'CPM' if goal_segment in ['RGD', 'SGD', 'SBD'] else ''
    
    start_date = convert_date(start_date_str)
    end_date = convert_date(end_date_str)
    
    return start_date, end_date, goal

# Rename columns to match the script's expectations
inputDf.columns = ['Campaign', 'Account', 'Pacing - Start Date', 'Pacing - End Date', 'Goal', 'Unnamed', 'Target (Impr/Spend/Views)']

# Drop the 'Unnamed' column
inputDf.drop(columns=['Unnamed'], inplace=True)

# Clean any leading/trailing spaces in the column names
inputDf.columns = inputDf.columns.str.strip()

# Filter for rows where the Goal column is blank and create a copy to avoid SettingWithCopyWarning
inputDf_filtered = inputDf[inputDf[RPT_COL_GOAL].isna()].copy()

# Ensure that the campaign names are treated as strings to avoid TypeError
inputDf_filtered[RPT_COL_CAMPAIGN] = inputDf_filtered[RPT_COL_CAMPAIGN].astype(str)

# Adding columns for extracted information to inputDf_filtered
inputDf_filtered[RPT_COL_PACING_START_DATE] = np.nan
inputDf_filtered[RPT_COL_PACING_END_DATE] = np.nan
inputDf_filtered[RPT_COL_GOAL] = np.nan

# Process each row in inputDf_filtered to extract information
for index, row in inputDf_filtered.iterrows():
    start_date, end_date, goal = extract_info_from_campaign_name_enhanced(row[RPT_COL_CAMPAIGN])
    if start_date or end_date or goal:  # Include rows with any valid extracted information
        inputDf_filtered.loc[index, RPT_COL_PACING_START_DATE] = start_date
        inputDf_filtered.loc[index, RPT_COL_PACING_END_DATE] = end_date
        inputDf_filtered.loc[index, RPT_COL_GOAL] = goal

# Filter inputDf_filtered for rows with extracted information
filteredDf = inputDf_filtered.dropna(subset=[RPT_COL_GOAL])

# Define the columns to be included in the output DataFrame
cols = [
    RPT_COL_CAMPAIGN,
    RPT_COL_ACCOUNT,
    RPT_COL_PACING_START_DATE,
    RPT_COL_PACING_END_DATE,
    RPT_COL_GOAL
]

# Create output DataFrame with the selected columns
outputDf = filteredDf[cols].copy()

# Print the output DataFrame to check the extracted information
print("Output DataFrame with extracted information:")
print(outputDf)

Post generated on 2025-03-11 01:25:51 GMT

comments powered by Disqus