Script 677: Budget Pacing Example
Purpose:
The Python script optimizes budget allocation for advertising campaigns to minimize lost impression share due to budget constraints.
To Elaborate
The script addresses the challenge of efficiently allocating advertising budgets across multiple campaigns to minimize lost impression share due to budget limitations. It considers factors such as remaining budget, days left in the month, historical spending, and potential spending. The script aggregates data by budget groups and calculates the full potential spend, adjusting for lost impression share. It excludes inactive campaigns and those without recent spending. The script then calculates a budget allocation ratio, capping potential spend at twice the historical amount, and allocates the remaining budget based on this ratio. It also calculates the daily budget needed to pace spending evenly over the remaining days of the month. The script ensures that only campaigns flagged for traffic receive budget allocations and checks for changes in budget calculations to update only the necessary campaigns.
Walking Through the Code
- Configurable Parameters:
- The script begins by defining a configurable parameter,
MINIMUM_DAILY_BUDGET
, which allows users to set a minimum threshold for daily budget allocation.
- The script begins by defining a configurable parameter,
- Data Preparation:
- The script sets up column constants for various data fields and initializes the input DataFrame,
inputDf
, with campaign data. - It adjusts historical spend data by accounting for lost impression share due to budget constraints.
- The script sets up column constants for various data fields and initializes the input DataFrame,
- Data Aggregation:
- The script groups data by budget-related columns and aggregates metrics such as campaign status, daily budget, and spend target.
- It calculates the month-to-date (MTD) spend for each campaign.
- Campaign Filtering:
- Inactive campaigns and those without recent spending are excluded from budget allocation.
- Budget Allocation Ratio Calculation:
- The script calculates a capped full potential spend for each campaign and determines the allocation ratio within each budget group.
- Remaining Budget Calculation:
- It computes the remaining budget for each budget group by subtracting the MTD spend from the spend target.
- Budget Allocation:
- The remaining budget is allocated to each campaign based on the calculated allocation ratio.
- Daily Budget Calculation:
- The script calculates the daily budget for the next day by dividing the allocated budget by the number of days left in the month.
- It ensures that only campaigns flagged for traffic receive budget allocations.
- Pacing Compliance Calculation:
- The script calculates the pacing compliance percentage to ensure budgets are spent evenly throughout the month.
- Output Generation:
- The script checks for changes in budget calculations and generates an output DataFrame,
outputDf
, with updated budget allocations for campaigns with changes.
- The script checks for changes in budget calculations and generates an output DataFrame,
Vitals
- Script ID : 677
- Client ID / Customer ID: 314475863 / 63970
- Action Type: Bulk Upload (Preview)
- Item Changed: Campaign
- Output Columns: Account, Campaign, Daily Budget, SBA Allocation, SBA Budget Pacing, SBA Calculated Budget Daily
- Linked Datasource: M1 Report
- Reference Datasource: None
- Owner: dwaidhas@marinsoftware.com (dwaidhas@marinsoftware.com)
- Created by dwaidhas@marinsoftware.com on 2024-02-05 22:07
- Last Updated by dwaidhas@marinsoftware.com on 2024-02-06 14:50
> See it in Action
Python Code
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
#
# 4 All Promos- Budget Pacing - Minimize Lost IS (Budget)
#
# Allocates according to:
# * Remaining budget for each Budget
# * Remaining days in month
# * Historical spend and spend potential
# * Campaigns with spend in lookback period
# * Minimum daily budget
#
# Author: Dana Waidhas
#
# Created: 2024-02-05
# Updated: 2024-02-06
##### Configurable Param #####
MINIMUM_DAILY_BUDGET = 0
##############################
RPT_COL_CAMPAIGN = 'Campaign'
RPT_COL_DATE = 'Date'
RPT_COL_ACCOUNT = 'Account'
RPT_COL_PUBLISHER = 'Publisher'
RPT_COL_STRATEGY = 'Strategy'
RPT_COL_DAILY_BUDGET = 'Daily Budget'
RPT_COL_CAMPAIGN_STATUS = 'Campaign Status'
RPT_COL_PUB_COST = 'Pub. Cost $'
RPT_COL_CLICKS = 'Clicks'
RPT_COL_CONV = 'Conv.'
RPT_COL_IMPR_SHARE = 'Impr. share %'
RPT_COL_LOST_IMPR_SHARE_BUDGET = 'Lost Impr. Share (Budget) %'
RPT_COL_LOST_IMPR_SHARE_RANK = 'Lost Impr. Share (Rank) %'
RPT_COL_BUDGET = 'Budget'
RPT_COL_SPEND_TARGET = 'Spend Target'
RPT_COL_SBA_ALLOCATION = 'SBA Allocation'
RPT_COL_SBA_CALCULATED_BUDGET_DAILY = 'SBA Calculated Budget Daily'
RPT_COL_SBA_BUDGET_PACING = 'SBA Budget Pacing'
RPT_COL_SBA_TRAFFIC = 'SBA Traffic'
BULK_COL_ACCOUNT = 'Account'
BULK_COL_CAMPAIGN = 'Campaign'
BULK_COL_DAILY_BUDGET = 'Daily Budget'
BULK_COL_SBA_ALLOCATION = 'SBA Allocation'
BULK_COL_SBA_BUDGET_PACING = 'SBA Budget Pacing'
BULK_COL_SBA_CALCULATED_BUDGET_DAILY = 'SBA Calculated Budget Daily'
COL_SPEND_FULL_POTENTIAL = 'spend_lookback_full_potential'
COL_SPEND_FULL_POTENTIAL_CAPPED = 'spend_lookback_full_potential_capped'
COL_SPEND_MTD = 'spend_mtd'
COL_SBA_ALLOCATION_NEW_FLOAT = RPT_COL_SBA_ALLOCATION + '_new_float'
COL_SBA_ALLOCATION_NEW = RPT_COL_SBA_ALLOCATION + '_new'
COL_BUDGET_REMAINING = 'budget_remaining'
COL_SBA_BUDGET_PACING_NEW = RPT_COL_SBA_BUDGET_PACING + '_new'
COL_BUDGET_REMAINING = 'budget_remaining'
COL_DAILY_BUDGET_NEW = RPT_COL_DAILY_BUDGET + '_new'
COL_SBA_CALCULATED_BUDGET_DAILY_NEW = RPT_COL_SBA_CALCULATED_BUDGET_DAILY + '_new'
COL_DAYS_REMAINING= 'days_remaining'
COL_DAYS_TOTAL= 'days_total'
COL_PACING_CALC = 'pacing_calc'
outputDf[BULK_COL_DAILY_BUDGET] = "<<YOUR VALUE>>"
today = datetime.datetime.now(CLIENT_TIMEZONE).date()
print("inputDf shape", inputDf.shape)
print("inputDf dtypes", inputDf.dtypes)
# change back to percent string
if inputDf[RPT_COL_SBA_ALLOCATION].dtype == "float":
inputDf[RPT_COL_SBA_ALLOCATION] = round(inputDf[RPT_COL_SBA_ALLOCATION] * 100.0, 0).astype(str) + '%'
if inputDf[BULK_COL_SBA_BUDGET_PACING].dtype == "float":
inputDf[BULK_COL_SBA_BUDGET_PACING] = round(inputDf[BULK_COL_SBA_BUDGET_PACING] * 100.0, 0).astype(str) + '%'
inputDf = inputDf.set_index([RPT_COL_BUDGET])
group_by_budget = inputDf.groupby(RPT_COL_BUDGET)
# ## Calculate Full-Potential Spend
# * Adjust Historical Spend by _Lost Impression Share due to Budget_ (see [Formula](https://docs.google.com/document/d/1EbCQ5z9Up8TZ6GISEeCaRSB3Fc15vCPCfeIydree23M/edit#bookmark=id.5fsx7jlseze6))
#
adj_ratio = 1 + (inputDf[RPT_COL_LOST_IMPR_SHARE_BUDGET] / (1 - inputDf[RPT_COL_LOST_IMPR_SHARE_BUDGET]))
inputDf[COL_SPEND_FULL_POTENTIAL] = round(inputDf[RPT_COL_PUB_COST] * adj_ratio, 2)
# ## Remove Date Segmentation
# * Calculate MTD Spend
# SUM Series with Date index and only includes current month
def current_month_sum(x):
x = x.sort_index()
mtd = x[ (x.index.month == today.month) & (x.values > 0)]
return mtd.sum()
groupby_cols = [ \
RPT_COL_BUDGET, \
RPT_COL_STRATEGY, \
RPT_COL_PUBLISHER, \
RPT_COL_ACCOUNT, \
RPT_COL_CAMPAIGN, \
]
agg_spec = {
RPT_COL_CAMPAIGN_STATUS: 'last', \
RPT_COL_DAILY_BUDGET: 'last', \
RPT_COL_SPEND_TARGET: 'last', \
RPT_COL_SBA_ALLOCATION: 'last', \
RPT_COL_SBA_CALCULATED_BUDGET_DAILY: 'last', \
RPT_COL_SBA_BUDGET_PACING: 'last', \
RPT_COL_SBA_TRAFFIC: 'last', \
RPT_COL_CLICKS: 'sum', \
RPT_COL_CONV: 'sum', \
RPT_COL_PUB_COST: 'sum', \
COL_SPEND_MTD: current_month_sum, \
COL_SPEND_FULL_POTENTIAL: 'sum', \
}
inputDf[COL_SPEND_MTD] = inputDf[RPT_COL_PUB_COST]
df_campaign_agg = inputDf.reset_index() \
.set_index(RPT_COL_DATE) \
.groupby(groupby_cols) \
.agg(agg_spec) \
.reset_index() \
.set_index(RPT_COL_BUDGET)
# ## Only allocate budget for recently trafficking campaigns
# * Exclude Campaigns that are not ACTIVE and without spend in lookback period
inactive_campaigns = (df_campaign_agg[RPT_COL_CAMPAIGN_STATUS] != 'Active') & (df_campaign_agg[RPT_COL_PUB_COST] == 0)
df_campaign_agg = df_campaign_agg.loc[ ~inactive_campaigns ]
# ## Calculate Budget Allocation Ratio
# * Cap full potential spend at 2X (don't spend twice as much as before)
# * Compare full potential spend for each campaign to total spend within same Budget budget group
df_campaign_agg[COL_SPEND_FULL_POTENTIAL_CAPPED] = df_campaign_agg \
.apply(lambda row: min(row[COL_SPEND_FULL_POTENTIAL], 2 * row[RPT_COL_PUB_COST]), axis=1)
# use transform to calculate sum for each Budget and make it available on every row
# note: no need to build aggregate DataFrame and JOIN back to original
df_campaign_agg[COL_SBA_ALLOCATION_NEW_FLOAT] = 100.0 * \
df_campaign_agg[COL_SPEND_FULL_POTENTIAL_CAPPED] / \
df_campaign_agg.groupby(RPT_COL_BUDGET)[COL_SPEND_FULL_POTENTIAL_CAPPED].transform('sum')
df_campaign_agg[COL_SBA_ALLOCATION_NEW] = round(df_campaign_agg[COL_SBA_ALLOCATION_NEW_FLOAT],0).astype(str) + '%'
#
# ## Calculate Remaining Budget
# * For each Budget budget group, calculate how much Budget is left by substracting Budget budget from MTD Budget spend
df_campaign_agg[COL_BUDGET_REMAINING] = \
df_campaign_agg[RPT_COL_SPEND_TARGET] - \
df_campaign_agg.groupby(by=[RPT_COL_BUDGET])[COL_SPEND_MTD].sum()
# ## Allocate Budget
# * Allocate remaining budget to each campaign according to ratio calculated above
df_campaign_agg[COL_BUDGET_REMAINING] = round(df_campaign_agg[COL_BUDGET_REMAINING] * df_campaign_agg[COL_SBA_ALLOCATION_NEW_FLOAT] / 100.0, 1)
# ## Calculate SBA Daily Budget
#
# * Calcualte next day Daily Budget by dividing allocated budget by number of Days left in the current month
today_numpy = pd.to_datetime(today).to_numpy().astype('datetime64[D]')
next_month_start = (today_numpy + pd.offsets.BMonthBegin()).to_numpy().astype('datetime64[D]')
# ### Traffic Budget
# * only traffic budget for campaigns with flag enabled
df_campaign_agg[COL_DAILY_BUDGET_NEW] = np.nan
# campaigns to traffic
to_traffic = df_campaign_agg[RPT_COL_SBA_TRAFFIC].notnull() & \
(df_campaign_agg[RPT_COL_SBA_TRAFFIC].astype(str).str.lower() == 'traffic')
# ## Calculate Budget-level Pacing compliance percentage. Ideally should be 100% each day.
# number of elapsed days
current_month_start = pd.to_datetime(today.replace(day=1)).to_numpy().astype('datetime64[D]')
days_left = (next_month_start - today_numpy).astype('timedelta64[D]').astype(int)
days_in_month = (next_month_start - current_month_start).astype('timedelta64[D]').astype(int)
df_campaign_agg[COL_DAYS_TOTAL] = days_in_month
prorated_ratio = (days_in_month - days_left) / days_in_month
print("today", today)
print("current_month_start", current_month_start)
print("next_month_start", next_month_start)
print("days_in_month", days_in_month)
print("days_left", days_left)
print("prorated_ratio", prorated_ratio)
df_campaign_agg[COL_DAYS_REMAINING] = days_left
df_campaign_agg[COL_SBA_CALCULATED_BUDGET_DAILY_NEW] = round(df_campaign_agg[COL_BUDGET_REMAINING] / days_left, 0)
# divide MTD spend by prorated total budget
mask = df_campaign_agg[RPT_COL_SPEND_TARGET] > 0
df_campaign_agg[COL_PACING_CALC] = round(100.0 * \
df_campaign_agg.groupby(by=[RPT_COL_BUDGET])[COL_SPEND_MTD].sum() / \
(prorated_ratio * df_campaign_agg[RPT_COL_SPEND_TARGET]), \
0).astype(str) + '%'
df_campaign_agg.loc[mask, COL_SBA_BUDGET_PACING_NEW] = df_campaign_agg.loc[mask, COL_PACING_CALC]
# Debug DF with full details
df_spend_target = group_by_budget[[RPT_COL_SPEND_TARGET]].transform('max').dropna().drop_duplicates()
print("spend target", df_spend_target.to_string())
# ## Generate outputDf
# Check for changes
changed = df_campaign_agg[COL_SBA_CALCULATED_BUDGET_DAILY_NEW].notnull() & \
( \
(df_campaign_agg[RPT_COL_SBA_CALCULATED_BUDGET_DAILY] != df_campaign_agg[COL_SBA_CALCULATED_BUDGET_DAILY_NEW]) | \
(df_campaign_agg[RPT_COL_DAILY_BUDGET] != df_campaign_agg[COL_DAILY_BUDGET_NEW]) | \
(df_campaign_agg[RPT_COL_SBA_ALLOCATION] != df_campaign_agg[COL_SBA_ALLOCATION_NEW]) | \
(df_campaign_agg[RPT_COL_SBA_BUDGET_PACING] != df_campaign_agg[COL_SBA_BUDGET_PACING_NEW]) \
)
print("Changed rows:", changed.sum())
# Debug
debugDf = df_campaign_agg.loc[changed] \
.reset_index() \
.sort_values(by=[RPT_COL_BUDGET, COL_DAILY_BUDGET_NEW, COL_SBA_CALCULATED_BUDGET_DAILY_NEW], ascending=False)
# print("debugDf", tableize(debugDf))
# Only emit output for changed campaigns
if changed.sum() > 0:
# construct outputDf
outputDf = df_campaign_agg.loc[changed, [RPT_COL_ACCOUNT, RPT_COL_CAMPAIGN, COL_DAILY_BUDGET_NEW, COL_SBA_CALCULATED_BUDGET_DAILY_NEW, COL_SBA_BUDGET_PACING_NEW, COL_SBA_ALLOCATION_NEW]] \
.copy() \
.rename(columns={ \
COL_DAILY_BUDGET_NEW: BULK_COL_DAILY_BUDGET, \
COL_SBA_CALCULATED_BUDGET_DAILY_NEW: BULK_COL_SBA_CALCULATED_BUDGET_DAILY, \
COL_SBA_BUDGET_PACING_NEW: BULK_COL_SBA_BUDGET_PACING, \
COL_SBA_ALLOCATION_NEW: BULK_COL_SBA_ALLOCATION, \
}) \
.reset_index() \
.sort_values(by=[RPT_COL_BUDGET, BULK_COL_DAILY_BUDGET, BULK_COL_SBA_CALCULATED_BUDGET_DAILY], ascending=False) \
.drop(RPT_COL_BUDGET, axis=1)
print("outputDf shape", outputDf.shape)
else:
print("No changes detected, returning an empty dataframe")
outputDf = pd.DataFrame(columns=[BULK_COL_ACCOUNT, BULK_COL_CAMPAIGN, BULK_COL_DAILY_BUDGET, BULK_COL_SBA_CALCULATED_BUDGET_DAILY, BULK_COL_SBA_BUDGET_PACING, BULK_COL_SBA_ALLOCATION])
Post generated on 2025-03-11 01:25:51 GMT