Script 619: Pause CCT Groups
Purpose:
The Python script processes and updates group statuses based on keyword and studio conditions to manage campaign groups effectively.
To Elaborate
The script is designed to manage and update the status of campaign groups by evaluating specific conditions related to keywords and studio names. It checks if a keyword consists of a single word and updates its status to ‘PAUSED’ if true. Additionally, it examines if certain studio names are associated with the group and if the group name contains the word ‘phrase’. If both conditions are met, the group’s status is updated to ‘PAUSED - ANIME’. The script ensures that the campaign groups are paused or checked based on these criteria, facilitating structured budget allocation and efficient campaign management.
Walking Through the Code
- Data Preparation:
- The script begins by preparing the input data from a primary data source, focusing on specific columns related to campaigns, groups, and keywords.
- It initializes output columns with placeholder values for further processing.
- Keyword Check:
- A function
check_token_length
is defined to determine if a keyword is a single word, marking it as ‘PAUSED’ if true. - A DataFrame
checkDf
is created to apply this function and update the status for single-word keywords.
- A function
- Group Data Preparation:
- A separate DataFrame
dedupeGroupDf
is created to handle group-level data, ensuring each group is represented by a single row.
- A separate DataFrame
- Data Merging:
- The script merges the keyword check DataFrame with the group DataFrame to consolidate information for further processing.
- Status Updates:
- The merged DataFrame is updated based on the keyword and group checks, adjusting the status and source template fields accordingly.
- Anime Check:
- The
check_conditions
function is applied to identify groups associated with specific studios and containing the word ‘phrase’, updating their status to ‘PAUSED - ANIME’.
- The
- Final Output:
- The processed DataFrame is assigned to
outputDf
, ready for further use or export.
- The processed DataFrame is assigned to
Vitals
- Script ID : 619
- Client ID / Customer ID: 1306924343 / 69058
- Action Type: Bulk Upload
- Item Changed: AdGroup
- Output Columns: Account, Campaign, Group, CCT_SourceTemplate_Backup, CCT_sourcetemplate, CCT_Group_pause_check, CCT_Single_keyword_processing, Status
- Linked Datasource: M1 Report
- Reference Datasource: None
- Owner: Jonathan Reichl (jreichl@marinsoftware.com)
- Created by Jonathan Reichl on 2023-12-22 10:54
- Last Updated by Jonathan Reichl on 2023-12-22 19:00
> See it in Action
Python Code
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
##
## name: Pause CCT Groups
## description:
##
##
## author:
## created: 2023-12-22
##
today = datetime.datetime.now(CLIENT_TIMEZONE).date()
# primary data source and columns
inputDf = dataSourceDict["1"]
RPT_COL_KEYWORD = 'Keyword'
RPT_COL_PUBLISHER = 'Publisher'
RPT_COL_CCT_SOURCETEMPLATE = 'CCT_sourcetemplate'
RPT_COL_CCT_SINGLE_KEYWORD_PROCESSING = 'CCT_Single_keyword_processing'
RPT_COL_CCT_GROUP_PAUSE_CHECK = 'CCT_Group_pause_check'
RPT_COL_CCT_SOURCETEMPLATE_BACKUP = 'CCT_SourceTemplate_Backup'
RPT_COL_CAMPAIGN = 'Campaign'
RPT_COL_GROUP = 'Group'
RPT_COL_PUB_ID = 'Pub. ID'
RPT_COL_GROUP_PUB_ID = 'Group Pub. ID'
RPT_COL_ACCOUNT = 'Account'
RPT_COL_STUDIO = 'Studio'
RPT_COL_GROUP_STATUS = 'Group Status'
# output columns and initial values
BULK_COL_ACCOUNT = 'Account'
BULK_COL_CAMPAIGN = 'Campaign'
BULK_COL_GROUP = 'Group'
BULK_COL_CCT_GROUP_PAUSE_CHECK = 'CCT_Group_pause_check'
BULK_COL_CCT_SINGLE_KEYWORD_PROCESSING = 'CCT_Single_keyword_processing'
BULK_COL_CCT_SOURCETEMPLATE = 'CCT_sourcetemplate'
BULK_COL_CCT_SOURCETEMPLATE_BACKUP = 'CCT_SourceTemplate_Backup'
BULK_COL_STATUS_UPDATE = 'updated_status'
BULK_COL_STATUS = 'Status'
outputDf[BULK_COL_CCT_GROUP_PAUSE_CHECK] = "<<YOUR VALUE>>"
outputDf[BULK_COL_CCT_SINGLE_KEYWORD_PROCESSING] = "<<YOUR VALUE>>"
outputDf[BULK_COL_CCT_SOURCETEMPLATE] = "<<YOUR VALUE>>"
outputDf[BULK_COL_CCT_SOURCETEMPLATE_BACKUP] = "<<YOUR VALUE>>"
# user code start here
print(tableize(inputDf))
def check_token_length(text):
tokens = text.split() # Splitting based on spaces
if len(tokens) == 1:
return 'PAUSED'
else:
return 'unchanged'
def check_conditions(df):
# Check if 'RPT_COL_STUDIO' is in (x, y, z)
studio_values = ['Medialink', 'Muse', 'Studio Pierrot', 'Liden Films']
studio_check = df[RPT_COL_STUDIO].isin(studio_values)
# Check if 'phrase' (case insensitive) is in 'RPT_COL_GROUP'
phrase_check = df[RPT_COL_GROUP].str.contains('phrase', case=False, na=False)
# If both conditions are met, return 'PAUSED - ANIME'
df.loc[studio_check & phrase_check, 'anime_status'] = 'PAUSED - ANIME'
#Build keyword check DF
check_columns = [BULK_COL_ACCOUNT,BULK_COL_CAMPAIGN,BULK_COL_GROUP,RPT_COL_KEYWORD]
checkDf = inputDf[check_columns].copy()
#where only a single work set to puased
checkDf[BULK_COL_STATUS_UPDATE] = checkDf[RPT_COL_KEYWORD].apply(check_token_length)
# set BULK_COL_CCT_Single_word_check for paused objects
checkDf.loc[checkDf[BULK_COL_STATUS_UPDATE] == 'PAUSED' , BULK_COL_CCT_SINGLE_KEYWORD_PROCESSING] = 'Paused|Single Word|'+ str(today)
print(tableize(checkDf))
# Filter checkDf to only include paused objects e.g. single keywords
checkDf = checkDf[checkDf[BULK_COL_STATUS_UPDATE] == 'PAUSED']
# build group DF
group_columns = [BULK_COL_ACCOUNT,BULK_COL_CAMPAIGN,BULK_COL_GROUP, RPT_COL_CCT_SOURCETEMPLATE, RPT_COL_GROUP_STATUS, RPT_COL_STUDIO]
dedupeGroupDf = inputDf[group_columns].copy()
#one row per group
dedupeGroupDf = dedupeGroupDf.drop_duplicates(subset=[BULK_COL_ACCOUNT,BULK_COL_CAMPAIGN,BULK_COL_GROUP], keep='first')
print('dedupeGroupDf')
print(tableize(dedupeGroupDf))
#merge 2 DFs
merged_df = pd.merge(dedupeGroupDf, checkDf, on=[BULK_COL_ACCOUNT, BULK_COL_CAMPAIGN, BULK_COL_GROUP], how='left')
print('merged_df')
print(tableize(merged_df))
merged_df[BULK_COL_STATUS] = merged_df[RPT_COL_GROUP_STATUS]
merged_df.loc[merged_df[BULK_COL_STATUS_UPDATE] != 'PAUSED' , BULK_COL_CCT_SINGLE_KEYWORD_PROCESSING] = 'Checked'
merged_df[BULK_COL_CCT_SOURCETEMPLATE_BACKUP] = merged_df[BULK_COL_CCT_SOURCETEMPLATE]
merged_df.loc[merged_df[BULK_COL_STATUS_UPDATE] == 'PAUSED' , BULK_COL_CCT_SOURCETEMPLATE] = ''
merged_df.loc[merged_df[BULK_COL_STATUS_UPDATE] == 'PAUSED' , BULK_COL_STATUS] = 'PAUSED'
#apply anime check
check_conditions(merged_df)
merged_df.loc[merged_df['anime_status'] == 'PAUSED - ANIME' , BULK_COL_CCT_SOURCETEMPLATE] = ''
merged_df.loc[merged_df['anime_status'] == 'PAUSED - ANIME' , BULK_COL_STATUS] = 'PAUSED'
merged_df.loc[merged_df['anime_status'] == 'PAUSED - ANIME' , BULK_COL_CCT_GROUP_PAUSE_CHECK] = 'Paused|Anime|'+str(today)
merged_df.loc[merged_df['anime_status'] != 'PAUSED - ANIME' , BULK_COL_CCT_GROUP_PAUSE_CHECK] = 'Checked'
outputDf = merged_df
Post generated on 2025-03-11 01:25:51 GMT