Script 613: AdGroup CPA Outlier

Purpose

The Python script identifies and tags AdGroups with abnormally high Cost Per Acquisition (CPA) performance within a campaign using a 30-day lookback period, excluding the most recent 3 days.

To Elaborate

The script is designed to analyze advertising data to identify AdGroups within campaigns that exhibit unusually high Cost Per Acquisition (CPA) performance. It uses a 30-day lookback period, excluding the most recent 3 days to account for conversion lag. The script aggregates performance metrics such as cost, conversions, revenue, and clicks for each AdGroup within a campaign. It then calculates key performance indicators like CPA, Return on Ad Spend (ROAS), conversion rate, and average cost per click. An anomaly detection function is employed to identify outliers in CPA performance using the Interquartile Range (IQR) method. AdGroups identified as outliers are tagged, and a summary of these anomalies is prepared for further analysis or reporting.

Walking Through the Code

  1. Data Preparation
    • The script begins by defining a 30-day lookback period, excluding the most recent 3 days, to mitigate conversion lag.
    • It filters the input data to include only the relevant date range and necessary columns such as account, campaign, group, date, cost, conversions, revenue, and clicks.
    • The data is aggregated by summing numerical metrics across dates for each AdGroup within a campaign.
  2. Feature Calculation
    • Key performance indicators are calculated for each AdGroup, including CPA, ROAS, conversion rate, and average CPC.
    • The data is indexed by account and campaign for structured analysis.
  3. Anomaly Detection
    • The script defines functions to detect anomalies using the IQR method, which identifies outliers based on a specified threshold.
    • It checks for anomalies in CPA performance, considering only AdGroups with significant spend (above the campaign median).
  4. Anomaly Identification and Tagging
    • For each campaign, the script identifies AdGroups with CPA anomalies and tags them with a descriptive message.
    • The results are compiled into a DataFrame for output, highlighting AdGroups with abnormally high CPA performance.

Vitals

  • Script ID : 613
  • Client ID / Customer ID: 1306923845 / 60269271
  • Action Type: Bulk Upload (Preview)
  • Item Changed: AdGroup
  • Output Columns: Account, Campaign, Group, AUTOMATION - Outlier
  • Linked Datasource: M1 Report
  • Reference Datasource: None
  • Owner: emerryfield@marinsoftware.com (emerryfield@marinsoftware.com)
  • Created by emerryfield@marinsoftware.com on 2023-12-19 18:31
  • Last Updated by Michael Huang on 2024-01-11 22:06
> See it in Action

Python Code

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
#
# Tag AdGroup if CPA performance is abnormally high within Campaign
#
#
# Author: Michael S. Huang
# Date: 2023-02-22
#

RPT_COL_DATE = 'Date'
RPT_COL_GROUP = 'Group'
RPT_COL_PUBLISHER = 'Publisher'
RPT_COL_ACCOUNT = 'Account'
RPT_COL_CAMPAIGN = 'Campaign'
RPT_COL_GROUP_ID = 'Group ID'
RPT_COL_PUB_COST = 'Pub. Cost $'
RPT_COL_COST_PER_CONV = 'Cost/Conv. $'
RPT_COL_ROAS = 'ROAS'
RPT_COL_CONV_RATE = 'Conv. Rate %'
RPT_COL_AVG_CPC = 'Avg. CPC $'
RPT_COL_IMPR = 'Impr.'
RPT_COL_CLICKS = 'Clicks'
RPT_COL_CONV = 'Conv.'
RPT_COL_REVENUE = 'Revenue $'
BULK_COL_ACCOUNT = 'Account'
BULK_COL_CAMPAIGN = 'Campaign'
BULK_COL_GROUP = 'Group'
BULK_COL_AUTOMATION_OUTLIER = 'AUTOMATION - Outlier'

outputDf[BULK_COL_AUTOMATION_OUTLIER] = numpy.nan

## Data Prep

print(inputDf[RPT_COL_DATE].min(), inputDf[RPT_COL_DATE].max())

# 30-day lookback without most recent 3 days due to conversion lag
start_date = pd.to_datetime(datetime.date.today() - datetime.timedelta(days=33))
end_date = pd.to_datetime(datetime.date.today() - datetime.timedelta(days=3))

df_reduced = inputDf[ (inputDf[RPT_COL_DATE] >= start_date) & (inputDf[RPT_COL_DATE] <= end_date) ]

if (df_reduced.shape[0] > 0):
    print("reduced dates\\n", min(df_reduced[RPT_COL_DATE]), max(df_reduced[RPT_COL_DATE]))
else:
    print("no more input to process")

# reduce to needed columns
df_reduced = df_reduced[[RPT_COL_ACCOUNT, RPT_COL_CAMPAIGN, RPT_COL_GROUP, RPT_COL_DATE, RPT_COL_PUB_COST, RPT_COL_CONV, RPT_COL_REVENUE, RPT_COL_CLICKS]].copy()

# sum metrics across dates for numerical columns only
agg_columns = {RPT_COL_PUB_COST: 'sum', RPT_COL_CONV: 'sum', RPT_COL_REVENUE: 'sum', RPT_COL_CLICKS: 'sum'}
df_group_perf = df_reduced.groupby([RPT_COL_ACCOUNT, RPT_COL_CAMPAIGN, RPT_COL_GROUP]).agg(agg_columns)

# remove rows without cost or conversions
df_group_perf = df_group_perf[(df_group_perf[RPT_COL_CONV] > 0) & (df_group_perf[RPT_COL_PUB_COST] > 0)]

# index by campaign
df_group_perf = df_group_perf.reset_index().set_index([RPT_COL_ACCOUNT, RPT_COL_CAMPAIGN]).sort_index()

# calculate features
df_group_perf[RPT_COL_COST_PER_CONV] = (df_group_perf[RPT_COL_PUB_COST] / df_group_perf[RPT_COL_CONV])
df_group_perf[RPT_COL_ROAS] = df_group_perf[RPT_COL_REVENUE] / df_group_perf[RPT_COL_PUB_COST]
df_group_perf[RPT_COL_CONV_RATE] = df_group_perf[RPT_COL_CONV] / df_group_perf[RPT_COL_CLICKS]
df_group_perf[RPT_COL_AVG_CPC] = (df_group_perf[RPT_COL_PUB_COST] / df_group_perf[RPT_COL_CLICKS])

## Define Anomaly Fuctions

# Finds anomalies using a certain function (e.g. sigma rule, IRQ etc.)
# data: DataFrame
#     Dataset with features
# func: func
#     Function to use to find anomalies
# features: list
#     Feature list
# thresh: int
#     Threshold value (e.g. 2/3 * sigma, 2/3 * IRQ)
# Returns: tuple
def get_feature_anomalies(data, func, features=None, thresh=3):

    if features:
        features_to_check = features
    else:
        features_to_check = data.columns 
        
    outliers_over = pd.Series(data=[False] * data.shape[0], index=data[features_to_check].index, name='is_outlier')
    outliers_under = pd.Series(data=[False] * data.shape[0], index=data[features_to_check].index, name='is_outlier')

    anomalies_summary = {}
    for feature in features_to_check:
        anomalies_mask_over, anomalies_mask_under, upper_bound, lower_bound = func(data, feature, thresh=thresh)
        anomalies_mask_combined = pd.concat([anomalies_mask_over, anomalies_mask_under], axis=1).any(axis=1)
        anomalies_summary[feature] = [upper_bound, lower_bound, sum(anomalies_mask_combined), 100*sum(anomalies_mask_combined)/len(anomalies_mask_combined)]
        outliers_over[anomalies_mask_over[anomalies_mask_over].index] = True
        outliers_under[anomalies_mask_under[anomalies_mask_under].index] = True
        
#         print("anomalies_mask_combined: ", anomalies_mask_combined)
#         print("Outliers: ", outliers)
        
    anomalies_summary = pd.DataFrame(anomalies_summary).T
    anomalies_summary.columns=['upper_bound', 'lower_bound', 'anomalies_count', 'anomalies_percentage']
    
    anomalies_ration = round(anomalies_summary['anomalies_percentage'].sum(), 2)
#     print(f'Total Outliers Ration: {anomalies_ration} %')
    
    return anomalies_summary, outliers_over, outliers_under

# Finds outliers/anomalies using IRQ 
# data: DataFrame
# col: str
# thresh: int
#     Number of IRQ to apply 
# Returns: Series 
#     Boolean Series Mask of outliers 
def is_anomaly_irq(data, col, thresh):

    IRQ = data[col].quantile(0.66) - data[col].quantile(0.33)
    upper_bound = data[col].quantile(0.66) + (thresh * IRQ)
    lower_bound = data[col].quantile(0.33) - (thresh * IRQ)
#     print("IRQ calc: ", col, IRQ, upper_bound, lower_bound)
#     anomalies_mask = pd.concat([data[col] > upper_bound, data[col] < lower_bound], axis=1).any(1)
    anomalies_mask_over = data[col] > upper_bound
    anomalies_mask_under = data[col] < lower_bound
#     print("Anomalies mask: ", (anomalies_mask_over, anomalies_mask_under))
    
    return anomalies_mask_over, anomalies_mask_under, upper_bound, lower_bound

def find_peer_anomaly(df_slice, features, irq_threshold=1.8, outliers_desired=(True, True)):
    
    (want_outliers_over, want_outliers_under) = outliers_desired
   
    if (df_slice.shape[0] < 3):
        return
    
    idx = df_slice.index.unique()
    
    df_slice.reset_index(inplace=True)
    
    anomalies_summary_irq, outlier_over_irq, outlier_under_irq = get_feature_anomalies( \
                df_slice, \
                func=is_anomaly_irq, \
                features=features, \
                thresh=irq_threshold)
    
    median_cost = df_slice[RPT_COL_PUB_COST].median()
    
#     print(f"over: {outlier_over_irq}")
#     print("under: {outlier_under_irq}")
    
    # include over/under outliers as desired
    is_outlier_irq = np.logical_or(
                        np.logical_and(want_outliers_over, outlier_over_irq),
                        np.logical_and(want_outliers_under, outlier_under_irq)
    )
    
#     print("is_outlier\\n", is_outlier_irq)
    
    # ignore anomaly from low spend adgroups (greater than campaign median)
    is_outlier_irq = np.logical_and(is_outlier_irq, df_slice[RPT_COL_PUB_COST] > median_cost)
    
    if sum(is_outlier_irq) > 0:
        print(">>> ANOMALY", idx)
        print(anomalies_summary_irq)
        cols = [RPT_COL_GROUP, RPT_COL_PUB_COST, RPT_COL_CONV, RPT_COL_REVENUE] + features
        print(df_slice.loc[is_outlier_irq, cols])
        
    return is_outlier_irq

## Find CPA Anomalies

print("input shape:", df_group_perf.shape)
df_anomalies = pd.DataFrame(columns=[RPT_COL_ACCOUNT, RPT_COL_CAMPAIGN, RPT_COL_GROUP, BULK_COL_AUTOMATION_OUTLIER])

# annotate via Marin Dimensions
def rowFunc(row):
    return 'CPA ${:,.2f} is much higher than campaign avg ${:,.2f}'.format(
        row[RPT_COL_COST_PER_CONV], \
        row[RPT_COL_COST_PER_CONV + '_median']
    )

for campaign_idx in df_group_perf.index.unique():
    df_campaign = df_group_perf.loc[[campaign_idx]].copy()
    df_campaign[RPT_COL_COST_PER_CONV + '_median'] = df_campaign[RPT_COL_COST_PER_CONV].mean()
    df_campaign[BULK_COL_AUTOMATION_OUTLIER] = np.nan
    outliers = find_peer_anomaly(df_campaign, [RPT_COL_COST_PER_CONV], irq_threshold=2, outliers_desired=(True,False))

    if outliers is not None and sum(outliers) > 0:
        df_outliers = df_campaign.loc[outliers].copy()
        df_outliers[BULK_COL_AUTOMATION_OUTLIER] = df_outliers.apply(rowFunc, axis=1)
        print(df_outliers)
        df_anomalies = pd.concat([df_anomalies, df_outliers], axis=0)

## Prepare Output

print(tableize(df_anomalies))

outputDf = df_anomalies[[RPT_COL_ACCOUNT, RPT_COL_CAMPAIGN, RPT_COL_GROUP, BULK_COL_AUTOMATION_OUTLIER]]

Post generated on 2024-11-27 06:58:46 GMT

comments powered by Disqus