Script 561: Pacing Start & End Date
Purpose
The script extracts and updates pacing start and end dates from campaign names in a dataset.
To Elaborate
The Python script is designed to parse campaign names in a dataset to extract start and end dates, which are then formatted and stored in a structured manner. This is particularly useful for managing and updating campaign data where the pacing dates are embedded within the campaign names. The script identifies these dates using regular expressions, converts them into a standardized ISO format, and updates the dataset accordingly. It also includes functionality to detect changes in the pacing dates and outputs only the modified entries. This ensures that any updates to the campaign pacing dates are accurately reflected in the dataset, facilitating better campaign management and reporting.
Walking Through the Code
- Initialization and Setup
- The script begins by defining constants for column names used in the input and output dataframes.
- Temporary columns are created in the input dataframe to store the parsed start and end dates.
- Date Extraction Function
- A function
get_dates_from_campaign_name
is defined to extract start and end dates from the campaign name using regular expressions. - The function handles various date formats and ensures the dates are converted to the ISO format (
YYYY-MM-DD
).
- A function
- Testing the Date Extraction
- A test function
test_get_dates_from_campaign_name
is implemented to verify the date extraction logic against multiple campaign name formats. - The test ensures that the function correctly parses and formats the dates.
- A test function
- Parsing and Updating Dataframe
- The script iterates over each row in the input dataframe, applying the date extraction function to populate the temporary columns with parsed dates.
- It identifies rows where the parsed dates differ from existing pacing dates, marking them as changed.
- Output Preparation
- The script filters the input dataframe to include only the rows with changed pacing dates.
- It renames the temporary columns to match the output dataframe’s structure and prepares the final output dataframe.
- The output is printed, showing only the campaigns with updated pacing dates.
Vitals
- Script ID : 561
- Client ID / Customer ID: 1306927179 / 60270139
- Action Type: Bulk Upload
- Item Changed: Campaign
- Output Columns: Account, Campaign, Pacing - End Date, Pacing - Start Date
- Linked Datasource: M1 Report
- Reference Datasource: None
- Owner: ascott@marinsoftware.com (ascott@marinsoftware.com)
- Created by ascott@marinsoftware.com on 2023-12-04 16:14
- Last Updated by ascott@marinsoftware.com on 2024-07-18 13:55
> See it in Action
Python Code
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
#
# Add Dimensions Tag based on Campaign Name
# * `Pacing - Start Date`
# * `Pacing - End Date`
# Example: `Search - Display Campaign & Google Ad Words (2/1/2023 - 1/31/2024)`
#
# Author: Michael S. Huang
# Created: 2023-11-25
#
RPT_COL_CAMPAIGN = 'Campaign'
RPT_COL_ACCOUNT = 'Account'
RPT_COL_PACING_START_DATE = 'Pacing - Start Date'
RPT_COL_PACING_END_DATE = 'Pacing - End Date'
BULK_COL_ACCOUNT = 'Account'
BULK_COL_CAMPAIGN = 'Campaign'
BULK_COL_PACING_START_DATE = 'Pacing - Start Date'
BULK_COL_PACING_END_DATE = 'Pacing - End Date'
outputDf[BULK_COL_PACING_START_DATE] = "<<YOUR VALUE>>"
outputDf[BULK_COL_PACING_END_DATE] = "<<YOUR VALUE>>"
# create temp column to store new dim tag and default to empty
TMP_START_DATE = RPT_COL_PACING_START_DATE + '_'
TMP_END_DATE = RPT_COL_PACING_END_DATE + '_'
inputDf[TMP_START_DATE] = np.nan
inputDf[TMP_END_DATE] = np.nan
# define function to parse out Start Date and End Date from `Campaign` column of row
# output should be in ISO format YYYY-MM-DD
def get_dates_from_campaign_name(row):
campaign_name = row['Campaign']
# Updated regex to handle optional spaces, parentheses, and missing closing parenthesis
date_pattern_full = r'(\d{1,2}/\d{1,2}/\d{2,4})\s*-\s*?(\d{1,2}/\d{1,2}/\d{2,4})'
match_full = re.search(date_pattern_full, campaign_name)
if match_full:
start_date_str, end_date_str = match_full.groups()
# Try parsing with four-digit year format
try:
start_date = datetime.datetime.strptime(start_date_str, '%m/%d/%Y').strftime('%Y-%m-%d')
end_date = datetime.datetime.strptime(end_date_str, '%m/%d/%Y').strftime('%Y-%m-%d')
except ValueError:
# If it fails, try parsing with two-digit year format
try:
start_date = datetime.datetime.strptime(start_date_str, '%m/%d/%y').strftime('%Y-%m-%d')
end_date = datetime.datetime.strptime(end_date_str, '%m/%d/%y').strftime('%Y-%m-%d')
except ValueError:
# If both fail, set to NaN
start_date, end_date = np.nan, np.nan
else:
start_date, end_date = np.nan, np.nan
return start_date, end_date
def test_get_dates_from_campaign_name():
campaign_formats = [
"Traffic_Array Variety Show_3/1/2024-3/31/2024",
"Traffic_Array Variety Show_(3/1/2024-3/31/2024)",
"Traffic_Array Variety Show_(3/1/2024-3/31/2024",
"Traffic_Array Variety Show_3/1/2024-3/31/2024)",
"Traffic_Array Variety Show_3/1/2024 - 3/31/2024",
"Traffic_Array Variety Show_(3/1/2024 - 3/31/2024)",
"Traffic_Array Variety Show_(3/1/2024 - 3/31/2024",
"Traffic_Array Variety Show_3/1/2024 - 3/31/2024)",
"Traffic_Array Variety Show_3/1/2024- 3/31/2024",
"Traffic_Array Variety Show_(3/1/2024- 3/31/2024)",
"Traffic_Array Variety Show_(3/1/2024- 3/31/2024",
"Traffic_Array Variety Show_3/1/2024- 3/31/2024)",
"Traffic_Array Variety Show_3/1/2024 -3/31/2024",
"Traffic_Array Variety Show_(3/1/2024 -3/31/2024)",
"Traffic_Array Variety Show_(3/1/2024 -3/31/2024",
"Traffic_Array Variety Show_3/1/2024 -3/31/2024)"
]
expected_result = ('2024-03-01', '2024-03-31')
for campaign in campaign_formats:
row = pd.Series({'Campaign': campaign})
assert get_dates_from_campaign_name(row) == expected_result, f"Test failed for format: {campaign}"
# Run the unit test
test_get_dates_from_campaign_name()
# parse out Start/End Date from Campaign name
for index, row in inputDf.iterrows():
start_date, end_date = get_dates_from_campaign_name(row)
inputDf.at[index, TMP_START_DATE] = start_date
inputDf.at[index, TMP_END_DATE] = end_date
print("inputDf with parsed tags", tableize(inputDf))
# find changed campaigns
changed = ((inputDf[TMP_START_DATE].notnull() & (inputDf[RPT_COL_PACING_START_DATE] != inputDf[TMP_START_DATE])) | \
(inputDf[TMP_END_DATE].notnull() & (inputDf[RPT_COL_PACING_END_DATE] != inputDf[TMP_END_DATE])))
print("== Campaigns with Changed Tag ==", tableize(inputDf.loc[changed]))
# only select changed rows
cols = [RPT_COL_ACCOUNT, RPT_COL_CAMPAIGN, TMP_START_DATE, TMP_END_DATE]
outputDf = inputDf.loc[ changed, cols ].copy() \
.rename(columns = { \
TMP_START_DATE: BULK_COL_PACING_START_DATE, \
TMP_END_DATE: BULK_COL_PACING_END_DATE \
})
if not outputDf.empty:
print("outputDf", tableize(outputDf))
else:
print("Empty outputDf")
outputDf = pd.DataFrame(columns=[BULK_COL_ACCOUNT, BULK_COL_CAMPAIGN, BULK_COL_PACING_START_DATE, BULK_COL_PACING_END_DATE])
Post generated on 2024-11-27 06:58:46 GMT