Script 513: AdGroup Cost Conv $ Outlier Tagging
Purpose:
The Python script identifies and tags AdGroups with abnormally low Cost/Conversion performance within a campaign over a specified lookback period.
To Elaborate
The script is designed to analyze advertising performance data, specifically focusing on the Cost per Conversion metric within AdGroups of a campaign. It aims to identify AdGroups that exhibit unusually low performance in terms of Cost per Conversion, which could indicate inefficiencies or issues in the advertising strategy. The analysis is conducted over a 30-day lookback period, excluding the most recent three days to account for conversion lag. By detecting these anomalies, the script helps in optimizing ad spend and improving return on advertising spend (ROAS) by tagging underperforming AdGroups for further review or adjustment.
Walking Through the Code
- Data Preparation
- The script begins by filtering the input data to include only the last 30 days, excluding the most recent three days.
- It then reduces the dataset to essential columns such as Account, Campaign, Group, Date, and performance metrics like Cost, Conversions, Revenue, and Clicks.
- The data is aggregated by summing these metrics across the specified date range for each AdGroup within a campaign.
- Feature Calculation
- Key performance indicators are calculated, including Cost per Conversion, ROAS, Conversion Rate, and Average CPC.
- These metrics are used to assess the performance of each AdGroup.
- Anomaly Detection
- The script defines functions to detect anomalies using the Interquartile Range (IQR) method.
- It identifies outliers in the Cost per Conversion metric by comparing each AdGroup’s performance against the campaign median.
- AdGroups with costs significantly higher than the median are flagged as potential anomalies.
- Anomaly Tagging
- For each campaign, the script checks for AdGroups with anomalously low Cost per Conversion.
- If anomalies are found, they are tagged with a descriptive message indicating the deviation from the campaign average.
- The results are compiled into a DataFrame for output, highlighting the identified anomalies for further action.
Vitals
- Script ID : 513
- Client ID / Customer ID: 367770165 / 16077
- Action Type: Bulk Upload
- Item Changed: AdGroup
- Output Columns: Account, Campaign, Group, AUTOMATION - INFO
- Linked Datasource: M1 Report
- Reference Datasource: None
- Owner: Jesus Garza (jgarza@marinsoftware.com)
- Created by Jesus Garza on 2023-11-07 22:15
- Last Updated by Autumn Archibald on 2023-12-08 17:37
> See it in Action
Python Code
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
#
# Tag AdGroup if ROAS performance is abnormally low within Campaign
#
#
# Author: Michael S. Huang
# Date: 2023-03-24
RPT_COL_GROUP = 'Group'
RPT_COL_DATE = 'Date'
RPT_COL_ACCOUNT = 'Account'
RPT_COL_CAMPAIGN = 'Campaign'
RPT_COL_CAMPAIGN_ID = 'Campaign ID'
RPT_COL_GROUP_ID = 'Group ID'
RPT_COL_PUB_COST = 'Pub. Cost $'
RPT_COL_COST_PER_CONV = 'Cost/Conv. $'
RPT_COL_ROAS = 'ROAS'
RPT_COL_CONV_RATE = 'Conv. Rate %'
RPT_COL_AVG_CPC = 'Avg. CPC $'
RPT_COL_CLICKS = 'Clicks'
RPT_COL_CONV = 'Conv.'
RPT_COL_REVENUE = 'Revenue $'
RPT_COL_IMPR = 'Impr.'
BULK_COL_ACCOUNT = 'Account'
BULK_COL_CAMPAIGN = 'Campaign'
BULK_COL_AUTOMATION_INFO = 'AUTOMATION - INFO'
outputDf[BULK_COL_AUTOMATION_INFO] = numpy.nan
## Data Prep
print(inputDf[RPT_COL_DATE].min(), inputDf[RPT_COL_DATE].max())
# 30-day lookback without most recent 3 days due to conversion lag
start_date = pd.to_datetime(datetime.date.today() - datetime.timedelta(days=33))
end_date = pd.to_datetime(datetime.date.today() - datetime.timedelta(days=3))
df_reduced = inputDf[ (inputDf[RPT_COL_DATE] >= start_date) & (inputDf[RPT_COL_DATE] <= end_date) ]
if (df_reduced.shape[0] > 0):
print("reduced dates\\n", min(df_reduced[RPT_COL_DATE]), max(df_reduced[RPT_COL_DATE]))
else:
print("no more input to process")
# reduce to needed columns
df_reduced = df_reduced[[RPT_COL_ACCOUNT, RPT_COL_CAMPAIGN, RPT_COL_GROUP, RPT_COL_DATE, RPT_COL_PUB_COST, RPT_COL_CONV, RPT_COL_REVENUE, RPT_COL_CLICKS]].copy()
# sum metics across dates
df_group_perf = df_reduced.groupby([RPT_COL_ACCOUNT, RPT_COL_CAMPAIGN, RPT_COL_GROUP])[[RPT_COL_PUB_COST, RPT_COL_CONV, RPT_COL_REVENUE, RPT_COL_CLICKS]].sum()
# remove rows without cost
df_group_perf = df_group_perf[(df_group_perf[RPT_COL_PUB_COST] > 0)]
# index by campaign
df_group_perf = df_group_perf.reset_index().set_index([RPT_COL_ACCOUNT, RPT_COL_CAMPAIGN]).sort_index()
# calculate features
df_group_perf[RPT_COL_COST_PER_CONV] = (df_group_perf[RPT_COL_PUB_COST] / df_group_perf[RPT_COL_CONV])
df_group_perf[RPT_COL_ROAS] = df_group_perf[RPT_COL_REVENUE] / df_group_perf[RPT_COL_PUB_COST]
df_group_perf[RPT_COL_CONV_RATE] = df_group_perf[RPT_COL_CONV] / df_group_perf[RPT_COL_CLICKS]
df_group_perf[RPT_COL_AVG_CPC] = (df_group_perf[RPT_COL_PUB_COST] / df_group_perf[RPT_COL_CLICKS])
## Define Anomaly Fuctions
# Finds anomalies using a certain function (e.g. sigma rule, IRQ etc.)
# data: DataFrame
# Dataset with features
# func: func
# Function to use to find anomalies
# features: list
# Feature list
# thresh: int
# Threshold value (e.g. 2/3 * sigma, 2/3 * IRQ)
# Returns: tuple
def get_feature_anomalies(data, func, features=None, thresh=3):
if features:
features_to_check = features
else:
features_to_check = data.columns
outliers_over = pd.Series(data=[False] * data.shape[0], index=data[features_to_check].index, name='is_outlier')
outliers_under = pd.Series(data=[False] * data.shape[0], index=data[features_to_check].index, name='is_outlier')
anomalies_summary = {}
for feature in features_to_check:
anomalies_mask_over, anomalies_mask_under, upper_bound, lower_bound = func(data, feature, thresh=thresh)
anomalies_mask_combined = pd.concat([anomalies_mask_over, anomalies_mask_under], axis=1).any(axis=1)
anomalies_summary[feature] = [upper_bound, lower_bound, sum(anomalies_mask_combined), 100*sum(anomalies_mask_combined)/len(anomalies_mask_combined)]
outliers_over[anomalies_mask_over[anomalies_mask_over].index] = True
outliers_under[anomalies_mask_under[anomalies_mask_under].index] = True
anomalies_summary = pd.DataFrame(anomalies_summary).T
anomalies_summary.columns=['upper_bound', 'lower_bound', 'anomalies_count', 'anomalies_percentage']
anomalies_ration = round(anomalies_summary['anomalies_percentage'].sum(), 2)
return anomalies_summary, outliers_over, outliers_under
# Finds outliers/anomalies using IRQ
# data: DataFrame
# col: str
# thresh: int
# Number of IRQ to apply
# Returns: Series
# Boolean Series Mask of outliers
def is_anomaly_irq(data, col, thresh):
IRQ = data[col].quantile(0.75) - data[col].quantile(0.25)
upper_bound = data[col].quantile(0.75) + (thresh * IRQ)
lower_bound = data[col].quantile(0.25) - (thresh * IRQ)
anomalies_mask_over = data[col] > upper_bound
anomalies_mask_under = data[col] < lower_bound
# print("Anomalies mask: ", (anomalies_mask_over, anomalies_mask_under))
return anomalies_mask_over, anomalies_mask_under, upper_bound, lower_bound
def find_peer_anomaly(df_slice, features, irq_threshold=1.8, outliers_desired=(True, True)):
(want_outliers_over, want_outliers_under) = outliers_desired
if (df_slice.shape[0] < 3):
return
idx = df_slice.index.unique()
df_slice.reset_index(inplace=True)
anomalies_summary_irq, outlier_over_irq, outlier_under_irq = get_feature_anomalies( \
df_slice, \
func=is_anomaly_irq, \
features=features, \
thresh=irq_threshold)
median_cost = df_slice[RPT_COL_PUB_COST].median()
# include over/under outliers as desired
is_outlier_irq = np.logical_or(
np.logical_and(want_outliers_over, outlier_over_irq),
np.logical_and(want_outliers_under, outlier_under_irq)
)
# ignore anomaly from low spend adgroups (greater than campaign median)
is_outlier_irq = np.logical_and(is_outlier_irq, df_slice[RPT_COL_PUB_COST] > median_cost)
if sum(is_outlier_irq) > 0:
print(">>> ANOMALY", idx)
print(anomalies_summary_irq)
cols = [RPT_COL_GROUP, RPT_COL_PUB_COST, RPT_COL_CONV, RPT_COL_REVENUE] + features
print(df_slice.loc[is_outlier_irq, cols])
return is_outlier_irq
## Find ROAS Anomalies
print("input shape:", df_group_perf.shape)
df_anomalies = pd.DataFrame()
# annotate via Marin Dimensions
def rowFunc(row):
return 'ROAS {:,.2f} is much lower than campaign avg {:,.2f}'.format(
row[RPT_COL_COST_PER_CONV], \
row[RPT_COL_COST_PER_CONV + '_median']
)
# dump data used for anomaly detection
print("df_group_perf\n\n", df_group_perf.to_string())
for campaign_idx in df_group_perf.index.unique():
df_campaign = df_group_perf.loc[[campaign_idx]].copy()
df_campaign[RPT_COL_COST_PER_CONV + '_median'] = df_campaign[RPT_COL_COST_PER_CONV].mean()
df_campaign[BULK_COL_AUTOMATION_INFO] = np.nan
outliers = find_peer_anomaly(df_campaign, [RPT_COL_COST_PER_CONV], irq_threshold=0.8, outliers_desired=(False,True))
if outliers is not None and sum(outliers) > 0:
df_outliers = df_campaign.loc[outliers].copy()
df_outliers[BULK_COL_AUTOMATION_INFO] = df_outliers.apply(rowFunc, axis=1)
print(df_outliers)
df_anomalies = pd.concat([df_anomalies, df_outliers], axis=0)
## Prepare Output
if not df_anomalies.empty:
print(tableize(df_anomalies))
outputDf = df_anomalies[[RPT_COL_ACCOUNT, RPT_COL_CAMPAIGN, RPT_COL_GROUP, BULK_COL_AUTOMATION_INFO]]
else:
print("No anomalies found!")
outputDf = outputDf.iloc[0:0]
Post generated on 2025-03-11 01:25:51 GMT