Script 41: Monthly Budget Cap GSheets

Script 41: Monthly Budget Cap GSheets

Purpose

Enforce Strategy and Campaign-level Monthly Budget Caps stored in Google Sheets.

To Elaborate

The Python script helps enforce monthly budget caps for strategies and campaigns in an advertising platform. It retrieves the budget caps from a Google Sheets document and compares them with the actual spend data. If the spend exceeds the caps, the script pauses the corresponding campaigns.

Walking Through the Code

  1. The script starts by defining some configurable parameters.
  2. It retrieves the budget caps from a Google Sheets document and stores them in a dataframe.
  3. The input data is reduced to only the necessary columns.
  4. The total spend for each strategy is calculated and stored in a separate dataframe.
  5. The script merges the strategy spend data with the budget caps dataframe to determine which strategies are over the cap.
  6. Similarly, it merges the campaign data with the budget caps dataframe to determine which campaigns are over the cap.
  7. The script updates the temporary status column for campaigns that are over the cap.
  8. It identifies the campaigns that have changed status.
  9. If there are changed campaigns, the script creates an output dataframe with the account, campaign, and new status.
  10. If there are no changed campaigns, an empty output dataframe is created.
  11. The script prints the output dataframe.

Vitals

  • Script ID : 41
  • Client ID / Customer ID: 309909744 / 14196
  • Action Type: Bulk Upload (Preview)
  • Item Changed: Campaign
  • Output Columns: Account, Campaign, Status
  • Linked Datasource: M1 Report
  • Reference Datasource: Google Sheets
  • Owner: Michael Huang (mhuang@marinsoftware.com)
  • Created by Michael Huang on 2023-03-28 09:22
  • Last Updated by Michael Huang on 2023-12-06 04:01
> See it in Action

Python Code

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
#
# Auto Pause Campaigns based on Monthly Budget Cap
#
# TODO: Reactivate Campaigns paused by script when new month starts (cost < cap) 
#  * tag SCRIPTS_PAUSED with date
#  * remove tag on new month
#  * reactivate if below cap and has tag
#
# Author: Michael S. Huang
# Created: 2023-05-17
# Updated: 2023-09-04
#

########### Configurable Params - START ##########

# Update: Now using GSheets to provide caps
# # define budget cap rules
# strategy_campaign_budget_cap = {
#     # format:
#     #  'strategy name': (overall-strategy cap, campaign-in-strategy cap)
#     'Unassigned': (100000, 7000),
#     'Criteo Retail': (25000, 2000),
#     'Amazon: Sponsored Products': (5000, 1000),
#     'TikTok - CPA': (25000, 2000),
#     'Cross Channel Budget Pacing': (10000, 1000),
# }

########### Configurable Params - END ###########

RPT_COL_CAMPAIGN = 'Campaign'
RPT_COL_ACCOUNT = 'Account'
RPT_COL_STRATEGY = 'Strategy'
RPT_COL_CAMPAIGN_STATUS = 'Campaign Status'
RPT_COL_PUB_COST = 'Pub. Cost $'
BULK_COL_ACCOUNT = 'Account'
BULK_COL_CAMPAIGN = 'Campaign'
BULK_COL_STATUS = 'Status'

VAL_STATUS_ACTIVE = 'Active'
VAL_STATUS_PAUSED = 'Paused'
COL_STRATEGY_CAP = 'strategy_cap'
COL_STRATEGY_CAMPAIGN_CAP = 'campaign_cap'

outputDf[BULK_COL_STATUS] = "<<YOUR VALUE>>"

# # convert budget cap into dataframe
# df_budget_caps = pd.DataFrame.from_dict(strategy_campaign_budget_cap, orient='index') \
#                  .reset_index()

# get budget cap from GSheets
df_budget_caps = dataSourceDict["2_1"]
df_budget_caps.columns = [RPT_COL_STRATEGY, COL_STRATEGY_CAP, COL_STRATEGY_CAMPAIGN_CAP]
print("budget caps", tableize(df_budget_caps))

# reduce inputDf to needed columns
cols = [RPT_COL_ACCOUNT, RPT_COL_CAMPAIGN, RPT_COL_STRATEGY, RPT_COL_CAMPAIGN_STATUS, RPT_COL_PUB_COST]
inputDf = inputDf[cols].copy()

# create temp column to store new status and default to empty
TMP_STATUS = RPT_COL_CAMPAIGN_STATUS + '_'
inputDf[TMP_STATUS] = np.nan

# calculate total spend for each Strategy
df_strategy_agg = inputDf.groupby(RPT_COL_STRATEGY).agg({RPT_COL_PUB_COST:'sum'})
print("== Strategy-level Spend ==", df_strategy_agg.to_string())

# put above together to determine Strategies over budget cap
df_strategy_agg_with_cap = df_strategy_agg.merge(df_budget_caps, on=[RPT_COL_STRATEGY]).reset_index()
print("strategy agg with cap", tableize(df_strategy_agg_with_cap))

strategies_over_cap = df_strategy_agg_with_cap.loc[ \
                        df_strategy_agg_with_cap[RPT_COL_PUB_COST] >= df_strategy_agg_with_cap[COL_STRATEGY_CAP], \
                        RPT_COL_STRATEGY \
                      ]

# similarly, combine budget cap with campaigns to determine campaigns over cap
df_campaigns_with_cap = inputDf.merge(df_budget_caps, on=[RPT_COL_STRATEGY], how='left').reset_index()
print("campaigns with cap", tableize(df_campaigns_with_cap))

# determine which campaigns are over Strategy Cap or Campaign Cap
campaigns_over_cap = (df_campaigns_with_cap[RPT_COL_STRATEGY].isin(strategies_over_cap)) | \
                     (df_campaigns_with_cap[RPT_COL_PUB_COST] >= df_campaigns_with_cap[COL_STRATEGY_CAMPAIGN_CAP])
                      
    
# Pause all camapigns over Strategy Cap or Campaign Cap
inputDf.loc[ campaigns_over_cap, TMP_STATUS ] = VAL_STATUS_PAUSED


# find changed campaigns
changed = inputDf[TMP_STATUS].notnull() & (inputDf[RPT_COL_CAMPAIGN_STATUS] != inputDf[TMP_STATUS])

if sum(changed) > 0:

    print("== Campaigns with Changed Status ==", tableize(inputDf.loc[changed]))

    # only select changed rows
    cols = [RPT_COL_ACCOUNT, RPT_COL_CAMPAIGN, TMP_STATUS]
    outputDf = inputDf.loc[ changed, cols ].copy() \
                    .rename(columns = { \
                        TMP_STATUS: BULK_COL_STATUS \
                    })
    print("outputDf", tableize(outputDf))
    
else:
    
  print("Empty outputDf")
  outputDf = outputDf.iloc[0:0]

Post generated on 2024-05-15 07:44:05 GMT

comments powered by Disqus