Script 405: Campaign Benchmark

Purpose

Python script to tag campaigns based on their performance metrics compared to benchmarks.

To Elaborate

This Python script is designed to tag campaigns based on their performance metrics compared to benchmarks. The script takes input data with metrics such as conversion rate, cost per conversion, click-through rate, and average cost per click. It then compares these metrics to benchmark values and assigns a performance tag to each campaign based on the comparison. The performance tags include “Over Target,” “Under Target,” and “On Target.” The script also calculates a performance ratio for each metric and separates campaigns into different performance groups based on this ratio.

Walking Through the Code

  1. The script defines column names for both input and output data.
  2. Empty output columns are set up in the output dataframe.
  3. The script defines a function to clean and convert values to numeric format, handling both numeric and percentage values.
  4. Another function is defined to construct a tuple of column names for marin dimensions columns based on a naming convention.
  5. The script defines a function to tag campaigns based on their performance compared to benchmarks. This function takes input and output dataframes, a tuple of column names, and a tag column name as parameters.
  6. The function cleans and converts the metric, benchmark, and margin columns to numeric format.
  7. If a benchmark value is not provided, the function calculates the median of the metric column and fills the benchmark column with this value.
  8. The function calculates the performance ratio by dividing the metric column by the benchmark column.
  9. The function separates campaigns into different performance groups based on the performance ratio and margin values.
  10. The function assigns performance tags to campaigns based on their performance groups.
  11. The function returns a boolean array indicating which rows in the input dataframe have changed performance tags.
  12. The script calls the tag_by_performance function for each metric, passing the input and output dataframes, column names, and tag column name as arguments.
  13. The script combines the boolean arrays indicating changed performance tags for each metric.
  14. The script prints the campaigns with changed performance tags for the conversion rate metric.
  15. The script updates the output dataframe to only include campaigns with changed performance tags.
  16. The script finishes execution.

Vitals

  • Script ID : 405
  • Client ID / Customer ID: 1306925143 / 60269255
  • Action Type: Bulk Upload
  • Item Changed: Campaign
  • Output Columns: Account, Campaign, Conv Rate % - Performance, Cost/Conv $ - Performance, CPC $ - Performance, CTR % - Performance
  • Linked Datasource: M1 Report
  • Reference Datasource: None
  • Owner: ascott@marinsoftware.com (ascott@marinsoftware.com)
  • Created by ascott@marinsoftware.com on 2023-10-23 15:35
  • Last Updated by ascott@marinsoftware.com on 2023-12-06 04:01
> See it in Action

Python Code

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
# columns for output
OUT_COL_MD_DEBUG_PERF_CALC = 'Performance Calc Raw Numbers'
OUT_COL_MD_DEBUG_PERF_CALC_LAST_RUN = 'Performance Calc Last Run Date'

# columns for input
IN_COL_METRIC_CVR = 'Conv. Rate %'
IN_COL_METRIC_CPA = 'Cost/Conv. $'
IN_COL_METRIC_CTR = 'CTR %'
IN_COL_METRIC_CPC = 'Avg. CPC $'


# columns for both input and output
IN_OUT_COL_CAMPAIGN = 'Campaign'
IN_OUT_COL_MD_PERF_CVR = 'Conv Rate % - Performance'
IN_OUT_COL_MD_PERF_CPA = 'Cost/Conv $ - Performance'
IN_OUT_COL_MD_PERF_CTR = 'CTR % - Performance'
IN_OUT_COL_MD_PERF_CPC = 'CPC $ - Performance'

# setup empty output columns
outputDf[OUT_COL_MD_DEBUG_PERF_CALC] = np.nan
#outputDf[OUT_COL_MD_DEBUG_PERF_CALC_LAST_RUN] = datetime.date.today().isoformat()
outputDf[IN_OUT_COL_MD_PERF_CVR] = np.nan
outputDf[IN_OUT_COL_MD_PERF_CPA] = np.nan
outputDf[IN_OUT_COL_MD_PERF_CTR] = np.nan
outputDf[IN_OUT_COL_MD_PERF_CPC] = np.nan

# Ensure that columns with percentage values (e.g., 'Conv. Rate %', 'CTR %') are properly cleaned and converted to numeric
# We need to handle both numeric and percentage values
def clean_and_convert_to_numeric(value):
    if isinstance(value, str):
        cleaned_value = value.replace(',', '')  # Remove commas (e.g., for numbers like '1,000')
        if cleaned_value.endswith('%'):
            numeric_value = float(cleaned_value.rstrip('%')) / 100  # Convert percentage to float
            print(f"Converted {value} to {numeric_value}")
            return numeric_value
        else:
            try:
                numeric_value = float(cleaned_value)
                print(f"Converted {value} to {numeric_value}")
                return numeric_value
            except ValueError:
                print(f"Unable to convert {value} to numeric, setting to np.nan")
                return np.nan
    elif isinstance(value, (float, int)):
        return float(value)
    else:
        return np.nan



# constructs tuple of 4 column names with names of marin dimensions columns based on convention used
def get_col_set_tuple(col_name):
	col_name_clean = col_name.replace('.','')
	return (
		col_name,
		col_name_clean + ' - Avg - Benchmark',
		col_name_clean + ' - High - Criteria',
		col_name_clean + ' - Low - Criteria'
	)


# set col_tag column on outDf with performance tag by comparing col_metric with col_benchmark
# returns array of boolean indicating changed rows in inDf
def tag_by_performance(inDf, outDf, col_set_tuple, col_tag):

	(col_metric, col_benchmark, col_over_margin, col_under_margin) = col_set_tuple

	# setup tmp columns for intrim values
	col_tag_name_new_value = col_tag + "_new"
	col_perf_ratio = col_tag + "_perf_ratio"

	inDf[col_tag_name_new_value] = np.nan

	# Ensure that columns with percentage values (e.g., 'Conv. Rate %', 'CTR %') are properly cleaned and converted to numeric
	inDf[col_metric] = inDf[col_metric].apply(clean_and_convert_to_numeric)
	inDf[col_benchmark] = inDf[col_benchmark].apply(clean_and_convert_to_numeric)
	inDf[col_over_margin] = inDf[col_over_margin].apply(clean_and_convert_to_numeric)
	inDf[col_under_margin] = inDf[col_under_margin].apply(clean_and_convert_to_numeric)

	# calculate benchmark if none provided
	median_metric = inputDf[col_metric].median()
	print(col_metric, "median", median_metric)
	inDf[col_benchmark].fillna({col_benchmark: median_metric}, inplace=True)
		
	# calc relative performance to benchmark
	inDf[col_perf_ratio] = inputDf[col_metric] / inputDf[col_benchmark]

	# separate into different performance groups
	array_benchmark_not_defined = inDf[col_benchmark] == np.nan
	array_benchmark_zero = inDf[col_benchmark] <= 0.0
	array_no_benchmark =  np.logical_or(array_benchmark_not_defined, array_benchmark_zero)

	array_over_perf = (inDf[col_perf_ratio] - 1.0) > inDf[col_over_margin]
	array_under_perf = (1.0 - inDf[col_perf_ratio]) > inDf[col_under_margin]
	array_on_target = np.logical_not(np.logical_or(array_no_benchmark, np.logical_or(array_over_perf, array_under_perf)))

	inDf.loc[ array_over_perf, col_tag_name_new_value ] = 'Over Target'
	inDf.loc[ array_under_perf, col_tag_name_new_value ] = 'Under Target'
	inDf.loc[ array_on_target, col_tag_name_new_value ] = 'On Target'
	#inDf.loc[ array_no_benchmark, col_tag_name_new_value ] = 'No Benchmark'

	# find changed perf tags
	changed = inDf[col_tag_name_new_value].notnull() & (inDf[col_tag] != inDf[col_tag_name_new_value])

	outDf[col_tag] = inDf[col_tag_name_new_value]

	return changed


# tag by performance for each of the 4 metrics

changed1 = tag_by_performance(
				inputDf, 
				outputDf,
				get_col_set_tuple(IN_COL_METRIC_CVR), 
				IN_OUT_COL_MD_PERF_CVR)

changed2 = tag_by_performance(
				inputDf, 
				outputDf,
				get_col_set_tuple(IN_COL_METRIC_CPA), 
				IN_OUT_COL_MD_PERF_CPA)

changed3 = tag_by_performance(
				inputDf, 
				outputDf,
				get_col_set_tuple(IN_COL_METRIC_CTR), 
				IN_OUT_COL_MD_PERF_CTR)

changed4 = tag_by_performance(
				inputDf, 
				outputDf,
				(IN_COL_METRIC_CPC,
				'CPC $ - Avg - Benchmark',
				'CPC $ - High - Criteria',
				'CPC $ - Low - Criteria'
				),
				IN_OUT_COL_MD_PERF_CPC)

combined_changes = np.logical_or(changed4, np.logical_or(changed3, np.logical_or(changed1, changed2)))

# debug print what's changed
print("== Campaigns with CVR Perf Tag changes ==")
in_cols = [IN_OUT_COL_CAMPAIGN, IN_OUT_COL_MD_PERF_CVR] + list(get_col_set_tuple(IN_COL_METRIC_CVR))
out_cols = [IN_OUT_COL_CAMPAIGN, IN_OUT_COL_MD_PERF_CVR]
inDf_changed = inputDf.loc[changed1, in_cols]
outDf_changed = outputDf.loc[changed1, out_cols]
debug_df = inDf_changed.join(outDf_changed, rsuffix="_out")
print(debug_df.to_string())


# only include campaigns with changed perf tag in bulk file
outputDf = outputDf[ combined_changes ]

Post generated on 2024-05-15 07:44:05 GMT

comments powered by Disqus