Script 359: Adjust for KW Headroom
Purpose:
The Python script adjusts keyword headroom based on historical performance data to optimize budget allocation.
To Elaborate
The script processes advertising data to adjust keyword headroom, which is a measure used to optimize budget allocation in digital marketing campaigns. It filters data to exclude entries from the last two days, aggregates performance metrics like cost, revenue, and impressions by keyword and other dimensions, and calculates the Return on Advertising Spend (ROAS) and impression share. Based on these calculations, it adjusts the keyword headroom adjustment factor, ensuring it is non-negative, and filters out keywords with an impression share of 98% or higher, indicating they are already receiving maximum exposure. This process helps in reallocating budget more effectively across keywords that have potential for increased performance.
Walking Through the Code
- Data Filtering:
- The script calculates a date two days prior to the current date and filters the input data to exclude records from the last two days. This ensures that only historical data is considered for analysis.
- Data Aggregation:
- The filtered data is grouped by keyword, match type, account, campaign, and group. It aggregates key metrics such as publisher cost, revenue, impressions, and impression opportunities.
- Metric Calculation:
- The script calculates the ROAS by dividing the total revenue by the total publisher cost for each group. It also computes the impression share by dividing the total impressions by the total impression opportunities.
- Headroom Adjustment:
- The keyword headroom adjustment is calculated based on the ROAS, and any negative adjustments are set to zero to prevent negative budget allocations.
- Final Filtering:
- The script filters out keywords with an impression share of 98% or higher, as these are already optimized in terms of exposure, and prepares the final output DataFrame for further use.
Vitals
- Script ID : 359
- Client ID / Customer ID: 197178269 / 13095968
- Action Type: Bulk Upload
- Item Changed: Keyword
- Output Columns: Account, Campaign, Group, Keyword, Match Type, KW Headroom Adj
- Linked Datasource: M1 Report
- Reference Datasource: None
- Owner: Jonathan Reichl (jreichl@marinsoftware.com)
- Created by Jonathan Reichl on 2023-10-16 11:14
- Last Updated by Jeremy Brown on 2023-12-06 04:01
> See it in Action
Python Code
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
RPT_COL_CLIENT = 'Client'
RPT_COL_CURRENCY = 'Currency'
RPT_COL_KEYWORD = 'Keyword'
RPT_COL_DATE = 'Date'
RPT_COL_STATUS = 'Status'
RPT_COL_MATCH_TYPE = 'Match Type'
RPT_COL_PUBLISHER = 'Publisher'
RPT_COL_ACCOUNT = 'Account'
RPT_COL_CAMPAIGN = 'Campaign'
RPT_COL_GROUP = 'Group'
RPT_COL_CAMPAIGN_STATUS = 'Campaign Status'
RPT_COL_GROUP_STATUS = 'Group Status'
RPT_COL_REVENUE_CAMPAIGNTYPE = 'Revenue Campaign Type'
RPT_COL_KW_HEADROOMADJ = 'KW Headroom Adj'
RPT_COL_PUB_COST = 'Pub. Cost $'
RPT_COL_REVENUE = 'Revenue $'
RPT_COL_ROAS = 'ROAS'
RPT_COL_CONV = 'Conv.'
RPT_COL_IMPR = 'Impr.'
RPT_COL_IMPR_OPS = 'Impression Ops'
RPT_COL_KEYWORD_ID = 'Keyword ID'
RPT_COL_COST_PER_CONV = 'Cost/Conv.'
RPT_COL_CONV_RATE = 'Conv. Rate %'
BULK_COL_ACCOUNT = 'Account'
BULK_COL_CAMPAIGN = 'Campaign'
BULK_COL_GROUP = 'Group'
BULK_COL_KEYWORD = 'Keyword'
BULK_COL_MATCH_TYPE = 'Match Type'
BULK_COL_KW_HEADROOMADJ = 'KW Headroom Adj'
outputDf[BULK_COL_KW_HEADROOMADJ] = "<<YOUR VALUE>>"
today = datetime.datetime.now(CLIENT_TIMEZONE).date()
# print(tableize(inputDf))
two_days_ago = pd.Timestamp(today - datetime.timedelta(days=2))
print(two_days_ago)
filtered_df = inputDf[inputDf[RPT_COL_DATE] < two_days_ago]
print(tableize(filtered_df))
grouped_df = filtered_df.groupby([
RPT_COL_KEYWORD,
RPT_COL_MATCH_TYPE,
RPT_COL_ACCOUNT,
RPT_COL_CAMPAIGN,
RPT_COL_GROUP
]).agg({RPT_COL_PUB_COST: 'sum', RPT_COL_REVENUE: 'sum'
, RPT_COL_IMPR: 'sum', RPT_COL_IMPR_OPS: 'sum' })
# Reset the index to make the grouping columns standalone columns
grouped_df = grouped_df.reset_index()
grouped_df[RPT_COL_ROAS] = grouped_df[RPT_COL_REVENUE] / grouped_df[RPT_COL_PUB_COST]
grouped_df['Impr_Share'] = grouped_df[RPT_COL_IMPR] / grouped_df[RPT_COL_IMPR_OPS]
grouped_df[RPT_COL_KW_HEADROOMADJ] = ((grouped_df[RPT_COL_ROAS] / 1)-1)*100
grouped_df.loc[grouped_df[RPT_COL_KW_HEADROOMADJ] <= 0, RPT_COL_KW_HEADROOMADJ] = 0
# new_names = {RPT_COL_ROAS: 'Promotion', RPT_COL_REVENUE: 'Plan Type', RPT_COL_PUB_COST:'Temp for New Keywords'}
# grouped_df.rename(columns=new_names, inplace=True) # The inplace=True modifies the DataFrame in place
outputDf = grouped_df[grouped_df['Impr_Share'] < 0.98]
Post generated on 2025-03-11 01:25:51 GMT