Script 327: Epicor Budget Pacing

Purpose

The Python script allocates daily budgets for each Epicor Budget Group by considering remaining budgets, weekdays, historical spending, and campaign activity.

To Elaborate

The script is designed to optimize the allocation of daily budgets for campaigns within Epicor Budget Groups. It takes into account several factors, including the remaining budget for each group, the number of weekdays left in the month, historical spending patterns, and the potential for future spending. The script also considers campaigns that have been active in the recent past and ensures that each campaign receives at least a minimum daily budget. The goal is to minimize lost impression share due to budget constraints while ensuring efficient budget pacing across all campaigns.

Walking Through the Code

  1. Configuration and Setup:
    • The script begins by setting a configurable parameter for the minimum daily budget (MINIMUM_DAILY_BUDGET).
    • It checks whether the code is running on a server or locally, and if local, it initializes data from a pickle file.
  2. Data Preparation:
    • The script converts certain columns to numeric types and fills missing values.
    • It groups data by EpicorID to prepare for budget calculations.
  3. Spend Calculations:
    • It calculates the full potential spend by adjusting historical spend based on lost impression share due to budget constraints.
    • The script aggregates data to calculate month-to-date (MTD) spend.
  4. Budget Allocation:
    • The script excludes inactive campaigns and calculates a budget allocation ratio for each campaign.
    • It computes the remaining budget for each EpicorID group and allocates it according to the calculated ratio.
  5. Daily Budget Calculation:
    • The script calculates the daily budget by dividing the allocated budget by the remaining weekdays in the month.
    • It ensures that the daily budget meets the minimum threshold.
  6. Traffic Budget:
    • The script determines which campaigns should have their budgets trafficked based on weekday checks and campaign flags.
  7. Pacing Compliance:
    • It calculates pacing compliance to ensure that the budget is being spent at an appropriate rate throughout the month.
  8. Output Generation:
    • The script checks for changes in budget allocations and generates an output DataFrame with updated budgets for campaigns that have changed.

Vitals

  • Script ID : 327
  • Client ID / Customer ID: 1306917127 / 60268084
  • Action Type: Bulk Upload
  • Item Changed: Campaign
  • Output Columns: Account, Campaign, SBA Allocation, SBA Budget Pacing, SBA Calculated Budget Daily, Daily Budget
  • Linked Datasource: M1 Report
  • Reference Datasource: None
  • Owner: Michael Huang (mhuang@marinsoftware.com)
  • Created by Michael Huang on 2023-09-30 13:18
  • Last Updated by Michael Huang on 2024-01-18 06:51
> See it in Action

Python Code

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
#
# Heartland Dental - Budget Pacing - Minimize Lost IS (Budget)
#
# Allocates according to:
# * Remaining budget for each Epicor Budget Group
# * Remaining weekdays in month
# * Historical spend and spend potential
# * Campaigns with spend in lookback period
# * Minimum daily budget
#
# Author: Michael S. Huang
#
# Created: 2023-09-30
# Updated: 2023-11-06
#

##### Configurable Param #####

MINIMUM_DAILY_BUDGET = 10

##############################


########### START - Local Mode Config ###########
# Step 1: Uncomment download_preview_input flag and run Preview successfully with the Datasources you want
download_preview_input=False
# Step 2: In MarinOne, go to Scripts -> Preview -> Logs, download 'dataSourceDict' pickle file, and update pickle_path below
pickle_path = '/Users/mhuang/Downloads/pickle/heartland_dental_pacing_20240118_datasource_dict.pkl'
# Step 3: Copy this script into local IDE with Python virtual env loaded with pandas and numpy.
# Step 4: Run locally with below code to init dataSourceDict

# determine if code is running on server or locally
def is_executing_on_server():
    try:
        # Attempt to access a known restricted builtin
        dict_items = dataSourceDict.items()
        return True
    except NameError:
        # NameError: dataSourceDict object is missing (indicating not on server)
        return False

local_dev = False

if is_executing_on_server():
    print("Code is executing on server. Skip init.")
elif len(pickle_path) > 3:
    print("Code is NOT executing on server. Doing init.")
    local_dev = True
    # load dataSourceDict via pickled file
    import pickle
    dataSourceDict = pickle.load(open(pickle_path, 'rb'))

    # print shape and first 5 rows for each entry in dataSourceDict
    for key, value in dataSourceDict.items():
        print(f"Shape of dataSourceDict[{key}]: {value.shape}")
        # print(f"First 5 rows of dataSourceDict[{key}]:\n{value.head(5)}")

    # set outputDf same as inputDf
    inputDf = dataSourceDict["1"]
    outputDf = inputDf.copy()

    # setup timezone
    import datetime
    # Chicago Timezone is GMT-5. Adjust as needed.
    CLIENT_TIMEZONE = datetime.timezone(datetime.timedelta(hours=-5))

    # import pandas
    import pandas as pd
    import numpy as np

    # Printing out the version of Python, Pandas and Numpy
    # import sys
    # python_version = sys.version
    # pandas_version = pd.__version__
    # numpy_version = np.__version__

    # print(f"python version: {python_version}")
    # print(f"pandas version: {pandas_version}")
    # print(f"numpy version: {numpy_version}")


    # other imports
    import re
    import urllib

    # import Marin util functions
    # from marin_scripts_utils import tableize, select_changed

    # pandas settings
    pd.set_option('display.max_columns', None)  # Display all columns
    pd.set_option('display.max_colwidth', None)  # Display full content of each column

else:
    print("Running locally but no pickle path defined. dataSourceDict not loaded.")
    exit(1)
########### END - Local Mode Setup ###########

RPT_COL_CAMPAIGN = 'Campaign'
RPT_COL_DATE = 'Date'
RPT_COL_ACCOUNT = 'Account'
RPT_COL_PUBLISHER_NAME = 'Publisher Name'
RPT_COL_STRATEGY = 'Strategy'
RPT_COL_DAILY_BUDGET = 'Daily Budget'
RPT_COL_CAMPAIGN_STATUS = 'Campaign Status'
RPT_COL_PUB_COST = 'Pub. Cost $'
RPT_COL_CLICKS = 'Clicks'
RPT_COL_CONV = 'Conv.'
RPT_COL_IMPR_SHARE = 'Impr. share %'
RPT_COL_LOST_IMPR_SHARE_BUDGET = 'Lost Impr. Share (Budget) %'
RPT_COL_LOST_IMPR_SHARE_RANK = 'Lost Impr. Share (Rank) %'
RPT_COL_EPICORID = 'epicorID'
RPT_COL_EPICORID_MONTHLY_BUDGET = 'epicorID - Monthly Budget'
RPT_COL_SBA_ALLOCATION = 'SBA Allocation'
RPT_COL_SBA_CALCULATED_BUDGET_DAILY = 'SBA Calculated Budget Daily'
RPT_COL_SBA_BUDGET_PACING = 'SBA Budget Pacing'
RPT_COL_SBA_TRAFFIC = 'SBA Traffic'

BULK_COL_ACCOUNT = 'Account'
BULK_COL_CAMPAIGN = 'Campaign'
BULK_COL_DAILY_BUDGET = 'Daily Budget'
BULK_COL_SBA_ALLOCATION = 'SBA Allocation'
BULK_COL_SBA_BUDGET_PACING = 'SBA Budget Pacing'
BULK_COL_SBA_CALCULATED_BUDGET_DAILY = 'SBA Calculated Budget Daily'

COL_SPEND_FULL_POTENTIAL = 'spend_lookback_full_potential'
COL_SPEND_FULL_POTENTIAL_CAPPED = 'spend_lookback_full_potential_capped'
COL_SPEND_MTD = 'spend_mtd'
COL_SBA_ALLOCATION_NEW_FLOAT = RPT_COL_SBA_ALLOCATION + '_new_float'
COL_SBA_ALLOCATION_NEW = RPT_COL_SBA_ALLOCATION + '_new'
COL_EPICOR_BUDGET_REMAINING = 'epicor_budget_remaining'
COL_SBA_BUDGET_PACING_NEW = RPT_COL_SBA_BUDGET_PACING + '_new'
COL_BUDGET_REMAINING = 'budget_remaining'
COL_DAILY_BUDGET_NEW = RPT_COL_DAILY_BUDGET + '_new'
COL_SBA_CALCULATED_BUDGET_DAILY_NEW = RPT_COL_SBA_CALCULATED_BUDGET_DAILY + '_new'
COL_WEEKDAYS_REMAINING= 'weekdays_remaining'
COL_WEEKDAYS_TOTAL= 'weekdays_total'
COL_PACING_CALC = 'pacing_calc'

outputDf[BULK_COL_DAILY_BUDGET] = "<<YOUR VALUE>>"

today = datetime.datetime.now(CLIENT_TIMEZONE).date()

# Convert RPT_COL_EPICORID_MONTHLY_BUDGET to numeric, coercing errors to NaN
inputDf[RPT_COL_EPICORID_MONTHLY_BUDGET] = pd.to_numeric(inputDf[RPT_COL_EPICORID_MONTHLY_BUDGET], errors='coerce')
# Replace NaN values with 0.0 if that's the desired behavior
inputDf[RPT_COL_EPICORID_MONTHLY_BUDGET].fillna(0.0, inplace=True)

# change back to percent string
if inputDf[RPT_COL_SBA_ALLOCATION].dtype == "float":
    inputDf[RPT_COL_SBA_ALLOCATION] = round(inputDf[RPT_COL_SBA_ALLOCATION] * 100.0, 0).astype(str) + '%'
if inputDf[BULK_COL_SBA_BUDGET_PACING].dtype == "float":
    inputDf[BULK_COL_SBA_BUDGET_PACING] = round(inputDf[BULK_COL_SBA_BUDGET_PACING] * 100.0, 0).astype(str) + '%'


print("inputDf shape", inputDf.shape)
print("inputDf info\n", inputDf.info())


inputDf = inputDf.set_index([RPT_COL_EPICORID])
group_by_epicor = inputDf.groupby(RPT_COL_EPICORID)

# ## Calculate Full-Potential Spend
# * Adjust Historical Spend by _Lost Impression Share due to Budget_ (see [Formula](https://docs.google.com/document/d/1EbCQ5z9Up8TZ6GISEeCaRSB3Fc15vCPCfeIydree23M/edit#bookmark=id.5fsx7jlseze6))
# 

adj_ratio = 1 + (inputDf[RPT_COL_LOST_IMPR_SHARE_BUDGET] / (1 - inputDf[RPT_COL_LOST_IMPR_SHARE_BUDGET]))

inputDf[COL_SPEND_FULL_POTENTIAL] = round(inputDf[RPT_COL_PUB_COST] * adj_ratio, 2)

# ## Remove Date Segmentation
# * Calculate MTD Spend

# SUM Series with Date index and only includes current month
def current_month_sum(x):
    x = x.sort_index()
    mtd = x[ (x.index.month == today.month) & (x.values > 0)]
    return mtd.sum()

groupby_cols = [ \
    RPT_COL_EPICORID, \
    RPT_COL_STRATEGY, \
    RPT_COL_PUBLISHER_NAME, \
    RPT_COL_ACCOUNT, \
    RPT_COL_CAMPAIGN, \
]


agg_spec = {
    RPT_COL_CAMPAIGN_STATUS: 'last', \
    RPT_COL_DAILY_BUDGET: 'last', \
    RPT_COL_EPICORID_MONTHLY_BUDGET: 'last', \
    RPT_COL_SBA_ALLOCATION: 'last', \
    RPT_COL_SBA_CALCULATED_BUDGET_DAILY: 'last', \
    RPT_COL_SBA_BUDGET_PACING: 'last', \
    RPT_COL_SBA_TRAFFIC: 'last', \
    RPT_COL_CLICKS: 'sum', \
    RPT_COL_CONV: 'sum', \
    RPT_COL_PUB_COST: 'sum', \
    COL_SPEND_MTD: current_month_sum, \
    COL_SPEND_FULL_POTENTIAL: 'sum', \
}

inputDf[COL_SPEND_MTD] = inputDf[RPT_COL_PUB_COST]

df_campaign_agg = inputDf.reset_index() \
                         .set_index(RPT_COL_DATE) \
                         .groupby(groupby_cols) \
                         .agg(agg_spec) \
                         .reset_index() \
                         .set_index(RPT_COL_EPICORID)


# ## Only allocate budget for recently trafficking campaigns
# * Exclude Campaigns that are not ACTIVE and without spend in lookback period

inactive_campaigns = (df_campaign_agg[RPT_COL_CAMPAIGN_STATUS] != 'Active') & (df_campaign_agg[RPT_COL_PUB_COST] == 0)

df_campaign_agg = df_campaign_agg.loc[ ~inactive_campaigns ]


# ## Calculate Budget Allocation Ratio 
# * Cap full potential spend at 2X (don't spend twice as much as before)
# * Compare full potential spend for each campaign to total spend within same EpicorID budget group

df_campaign_agg[COL_SPEND_FULL_POTENTIAL_CAPPED] = df_campaign_agg \
    .apply(lambda row: min(row[COL_SPEND_FULL_POTENTIAL], 2 * row[RPT_COL_PUB_COST]), axis=1)


# use transform to calculate sum for each EpicorID and make it available on every row
# note: no need to build aggregate DataFrame and JOIN back to original

df_campaign_agg[COL_SBA_ALLOCATION_NEW_FLOAT] = 100.0 * \
        df_campaign_agg[COL_SPEND_FULL_POTENTIAL_CAPPED] / \
        df_campaign_agg.groupby(RPT_COL_EPICORID)[COL_SPEND_FULL_POTENTIAL_CAPPED].transform('sum')

df_campaign_agg[COL_SBA_ALLOCATION_NEW] = round(df_campaign_agg[COL_SBA_ALLOCATION_NEW_FLOAT],0).astype(str) + '%'


# 
# ## Calculate Remaining Budget
# * For each EpicorID budget group, calculate how much Budget is left by substracting Epicor budget from MTD Epicor spend

df_campaign_agg[COL_EPICOR_BUDGET_REMAINING] =  \
        df_campaign_agg[RPT_COL_EPICORID_MONTHLY_BUDGET] - \
        df_campaign_agg.groupby(by=[RPT_COL_EPICORID])[COL_SPEND_MTD].sum()


# ## Allocate Budget
# * Allocate remaining budget to each campaign according to ratio calculated above

df_campaign_agg[COL_BUDGET_REMAINING] = round(df_campaign_agg[COL_EPICOR_BUDGET_REMAINING] * df_campaign_agg[COL_SBA_ALLOCATION_NEW_FLOAT] / 100.0, 1)


# ## Calculate SBA Daily Budget
# 
# * Calcualte next day Daily Budget by dividing allocated budget by number of Business Days left in the current month


today_numpy = pd.to_datetime(today).to_numpy().astype('datetime64[D]')
next_month_start = (today_numpy + pd.offsets.BMonthBegin()).to_numpy().astype('datetime64[D]')

# for months ending on weekends, use max(1,x) to avoid dividing by zero
weekdays_left = max(1, np.busday_count(today_numpy, next_month_start))

df_campaign_agg[COL_WEEKDAYS_REMAINING] = weekdays_left
df_campaign_agg[COL_SBA_CALCULATED_BUDGET_DAILY_NEW] = round(df_campaign_agg[COL_BUDGET_REMAINING] / weekdays_left, 0)

# ### Apply Minimum Rule
# * Bump allocated budget above minimum

allocated_below_min = (df_campaign_agg[COL_SBA_CALCULATED_BUDGET_DAILY_NEW] < MINIMUM_DAILY_BUDGET)
df_campaign_agg.loc[allocated_below_min, COL_SBA_CALCULATED_BUDGET_DAILY_NEW] = MINIMUM_DAILY_BUDGET


# ### Traffic Budget
#  * only traffic budget when it's weekday, and only for campaigns with flag enabled
df_campaign_agg[COL_DAILY_BUDGET_NEW] = np.nan
# Mon=1..Sat=6, Sunday=7
if today.isoweekday() < 6:
    # campaigns to traffic
    to_traffic = df_campaign_agg[RPT_COL_SBA_TRAFFIC].notnull() & \
                (df_campaign_agg[RPT_COL_SBA_TRAFFIC].astype(str).str.lower() == 'traffic')
    print("Not weekend. Traffic count", to_traffic.sum())

    # copy budgets over
    df_campaign_agg[COL_DAILY_BUDGET_NEW] = df_campaign_agg[COL_SBA_CALCULATED_BUDGET_DAILY_NEW]
    # then blank out budget for non-traffic campaigns
    df_campaign_agg.loc[~to_traffic, COL_DAILY_BUDGET_NEW] = np.nan
else:
    print("Weekend. Not trafficking.")

# ## Calculate Epicor-level Pacing compliance percentage. Ideally should be 100% each day.

# number of elapsed workdays
current_month_start = pd.to_datetime(today.replace(day=1)).to_numpy().astype('datetime64[D]')
weekdays_in_month = np.busday_count(current_month_start, next_month_start)
df_campaign_agg[COL_WEEKDAYS_TOTAL] = weekdays_in_month
prorated_ratio = (weekdays_in_month - weekdays_left + 1) / weekdays_in_month

print("today", today)
print("current_month_start", current_month_start)
print("next_month_start", next_month_start)
print("weekdays_in_month", weekdays_in_month)
print("weekdays_left", weekdays_left)
print("prorated_ratio", prorated_ratio)

# divide MTD spend by prorated total budget
mask = df_campaign_agg[RPT_COL_EPICORID_MONTHLY_BUDGET] > 0
df_campaign_agg[COL_PACING_CALC] = round(100.0 * \
                                    df_campaign_agg.groupby(by=[RPT_COL_EPICORID])[COL_SPEND_MTD].sum() / \
                                    (prorated_ratio * df_campaign_agg[RPT_COL_EPICORID_MONTHLY_BUDGET]), \
                                    0).astype(str) + '%'
df_campaign_agg.loc[mask, COL_SBA_BUDGET_PACING_NEW] = df_campaign_agg.loc[mask, COL_PACING_CALC]



# Debug DF with full details
df_epicor_budget = group_by_epicor[[RPT_COL_EPICORID_MONTHLY_BUDGET]].transform('max').dropna().drop_duplicates()
print("epicor budgets", df_epicor_budget.head(5))


# ## Generate outputDf

# Check for changes
changed = df_campaign_agg[COL_SBA_CALCULATED_BUDGET_DAILY_NEW].notnull() & \
    ( \
       (df_campaign_agg[RPT_COL_SBA_CALCULATED_BUDGET_DAILY] != df_campaign_agg[COL_SBA_CALCULATED_BUDGET_DAILY_NEW]) | \
       (df_campaign_agg[RPT_COL_DAILY_BUDGET] != df_campaign_agg[COL_DAILY_BUDGET_NEW]) | \
       (df_campaign_agg[RPT_COL_SBA_ALLOCATION] != df_campaign_agg[COL_SBA_ALLOCATION_NEW]) | \
       (df_campaign_agg[RPT_COL_SBA_BUDGET_PACING] != df_campaign_agg[COL_SBA_BUDGET_PACING_NEW]) \
    )

print("Changed rows:", changed.sum())

# Debug
debugDf = df_campaign_agg.loc[changed] \
      .reset_index() \
      .sort_values(by=[RPT_COL_EPICORID, COL_DAILY_BUDGET_NEW, COL_SBA_CALCULATED_BUDGET_DAILY_NEW], ascending=False) 

# print("debugDf", tableize(debugDf))

# Only emit output for changed campaigns
if changed.sum() > 0:

    # construct outputDf
    outputDf = df_campaign_agg.loc[changed, [RPT_COL_ACCOUNT, RPT_COL_CAMPAIGN, COL_DAILY_BUDGET_NEW, COL_SBA_CALCULATED_BUDGET_DAILY_NEW, COL_SBA_BUDGET_PACING_NEW, COL_SBA_ALLOCATION_NEW]] \
                      .copy() \
                      .rename(columns={ \
                            COL_DAILY_BUDGET_NEW: BULK_COL_DAILY_BUDGET, \
                            COL_SBA_CALCULATED_BUDGET_DAILY_NEW: BULK_COL_SBA_CALCULATED_BUDGET_DAILY, \
                            COL_SBA_BUDGET_PACING_NEW: BULK_COL_SBA_BUDGET_PACING, \
                            COL_SBA_ALLOCATION_NEW: BULK_COL_SBA_ALLOCATION, \
                        }) \
                      .reset_index() \
                      .sort_values(by=[RPT_COL_EPICORID, BULK_COL_DAILY_BUDGET, BULK_COL_SBA_CALCULATED_BUDGET_DAILY], ascending=False) \
                      .drop(RPT_COL_EPICORID, axis=1)

    print("outputDf shape", outputDf.shape)

else:
    print("No changes detected, returning an empty dataframe")
    outputDf = pd.DataFrame(columns=[BULK_COL_ACCOUNT, BULK_COL_CAMPAIGN, BULK_COL_DAILY_BUDGET, BULK_COL_SBA_CALCULATED_BUDGET_DAILY, BULK_COL_SBA_BUDGET_PACING, BULK_COL_SBA_ALLOCATION])


Post generated on 2024-11-27 06:58:46 GMT

comments powered by Disqus