Script 21: Budget Boost for Performing Campaigns

Script 21: Budget Boost for Performing Campaigns

Purpose

Python script to boost campaign budgets if CPA performance is better than peer average by a preset threshold.

To Elaborate

The Python script aims to automate the process of boosting campaign budgets based on the performance of the Cost Per Acquisition (CPA) metric. The script identifies campaigns that have a CPA performance that is better than the average CPA performance of similar campaigns within the same account. If a campaign meets this criteria, its budget is increased by a preset percentage.

Key business rules:

  • The script looks back at a 30-day period, excluding the most recent 3 days, to calculate the CPA performance.
  • The CPA performance threshold and budget increase step size are user-changeable parameters.
  • The script uses the pandas library to manipulate and analyze data.
  • The output of the script is a dataframe containing the account, campaign, updated daily budget, and a message indicating the reason for the budget increase.

Walking Through the Code

  1. Import necessary libraries and define column constants.
  2. Create empty columns in the output dataframe for the updated daily budget and the budget boost message.
  3. Set the CPA performance threshold and budget increase step size.
  4. Set an option to treat missing values in the CPA column as NaN.
  5. Reduce the input dataframe to only the necessary columns and fill in missing campaign types.
  6. Filter the dataframe to include only the data within the specified 30-day lookback period.
  7. Aggregate the data by account, campaign type, and campaign, summing the cost per conversion and taking the latest campaign budget.
  8. Calculate the CPA for each campaign by dividing the total cost by the total conversions.
  9. Calculate the average CPA by account and campaign type.
  10. Merge the average CPA data with the campaign data to make the comparison.
  11. Calculate the performance of the CPA relative to the categorical average.
  12. Calculate the new daily budget for all campaigns by increasing the current daily budget by the budget increase step size.
  13. Filter the campaigns that exceed the performance threshold and have a non-zero budget increase.
  14. If there are qualified campaigns, annotate the budget boost message using Marin Dimensions.
  15. Prepare the output dataframe with the account, campaign, updated daily budget, and budget boost message.
  16. Round the values in the output dataframe and remove the unnecessary level in the column index.
  17. If there are no qualified campaigns, print a message indicating that no campaigns exceeded the performance threshold.

Vitals

  • Script ID : 21
  • Client ID / Customer ID: 309909744 / 14196
  • Action Type: Bulk Upload (Preview)
  • Item Changed: Campaign
  • Output Columns: Account, Campaign, Daily Budget, AUTOMATION - Budget Boost
  • Linked Datasource: M1 Report
  • Reference Datasource: None
  • Owner: Michael Huang (mhuang@marinsoftware.com)
  • Created by Michael Huang on 2023-03-08 22:18
  • Last Updated by dwaidhas@marinsoftware.com on 2023-12-06 04:01
> See it in Action

Python Code

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
#
# Boost Campaign Budget if CPA performance is better than peer average by preset threshold
#
#
# Author: Michael S. Huang
# Date: 2023-02-18

RPT_COL_CAMPAIGN = 'Campaign'
RPT_COL_DATE = 'Date'
RPT_COL_ACCOUNT = 'Account'
RPT_COL_CAMPAIGN_ID = 'Campaign ID'
RPT_COL_CAMPAIGN_TYPE = 'Campaign Type'
RPT_COL_CAMPAIGN_STATUS = 'Campaign Status'
RPT_COL_DAILY_BUDGET = 'Daily Budget'
RPT_COL_PUB_COST = 'Pub. Cost $'
RPT_COL_COST_PER_CONV = 'Cost/Conv. $'
RPT_COL_ROAS = 'ROAS'
RPT_COL_AVG_CPC = 'Avg. CPC $'
RPT_COL_CONV_RATE = 'Conv. Rate %'
RPT_COL_CTR = 'CTR %'
RPT_COL_CONV = 'Conv.'
RPT_COL_REVENUE = 'Revenue $'
RPT_COL_SEARCH_LOSTTOPISBUDGET = 'Search Lost Top IS (Budget) %'
RPT_COL_SEARCH_LOSTTOPISRANK = 'Search Lost Top IS (Rank) %'
RPT_COL_LOST_IMPRSHAREBUDGET = 'Lost Impr. Share (Budget) %'
RPT_COL_LOST_IMPRSHARERANK = 'Lost Impr. Share (Rank) %'
RPT_COL_AVG_BID = 'Avg. Bid $'
RPT_COL_HIST_QS = 'Hist. QS'
RPT_COL_IMPR = 'Impr.'
RPT_COL_CLICKS = 'Clicks'
BULK_COL_ACCOUNT = 'Account'
BULK_COL_CAMPAIGN = 'Campaign'
BULK_COL_DAILY_BUDGET = 'Daily Budget'
BULK_COL_AUTOMATION_BUDGETBOOST = 'AUTOMATION - Budget Boost'

outputDf[BULK_COL_DAILY_BUDGET] = numpy.nan
outputDf[BULK_COL_AUTOMATION_BUDGETBOOST] = numpy.nan

# CPA Performance Threshold and Campaign Budget increase step size
performance_threshold = 0.10
budget_increase = 0.05

# when missing CONV, CPA is INF. Treat it as missing value.
pd.set_option('mode.use_inf_as_na', True)

# reduce to needed columns, fill in missing campaign type
df_reduced = inputDf[[RPT_COL_ACCOUNT, RPT_COL_CAMPAIGN_TYPE, RPT_COL_CAMPAIGN, RPT_COL_DATE, RPT_COL_DAILY_BUDGET, RPT_COL_PUB_COST, RPT_COL_CONV]].copy()
df_reduced.fillna({RPT_COL_CAMPAIGN_TYPE: 'NA'}, inplace=True)

# # limit to non-brand campaigns
# non_brand = (df_reduced[RPT_COL_CAMPAIGN].map(lambda x: 'NB' in x)) | (df_reduced[RPT_COL_CAMPAIGN].map(lambda x: 'nonbrand' in x.lower()))
# df_reduced = df_reduced[non_brand]

# print("reduced input\\n", df_reduced.to_string())

# 30-day lookback without most recent 3 days due to conversion lag
start_date = pd.to_datetime(datetime.date.today() - datetime.timedelta(days=33))
end_date = pd.to_datetime(datetime.date.today() - datetime.timedelta(days=3))
df_reduced = df_reduced[ (df_reduced[RPT_COL_DATE] >= start_date) & (df_reduced[RPT_COL_DATE] <= end_date) ]
if (df_reduced.shape[0] > 0):
    print("reduced dates\\n", min(df_reduced[RPT_COL_DATE]), max(df_reduced[RPT_COL_DATE]))
else:
    print("no more input to process")

# aggregate over remaining date range, summing cost/conv and take latest campaign budget
# remove 0 conv
agg_func_selection = {
    RPT_COL_DAILY_BUDGET: ['last'],
    RPT_COL_PUB_COST: ['sum'],
    RPT_COL_CONV: ['sum']
}
df_campaign_agg = df_reduced.groupby([RPT_COL_ACCOUNT, RPT_COL_CAMPAIGN_TYPE, RPT_COL_CAMPAIGN]).agg(agg_func_selection)

# recalc cpa
df_campaign_agg[RPT_COL_COST_PER_CONV] = df_campaign_agg[RPT_COL_PUB_COST] / df_campaign_agg[RPT_COL_CONV]
# print("recalc cpa for campaign w conv\\n", df_campaign_agg.to_string())

# calc avg cpa by account and campaign type
agg_func_selection = {
    RPT_COL_DAILY_BUDGET: ['mean'],
    RPT_COL_PUB_COST: ['sum'],
    RPT_COL_CONV: ['sum']
}
df_cpa_agg = df_reduced.groupby([RPT_COL_ACCOUNT, RPT_COL_CAMPAIGN_TYPE]).agg(agg_func_selection)
df_cpa_agg[RPT_COL_COST_PER_CONV] = df_cpa_agg[RPT_COL_PUB_COST] / df_cpa_agg[RPT_COL_CONV]
# print("avg cpa\\n", df_cpa_agg.to_string())

# merge avg cpa to input df to make comparison
df_comparison = df_campaign_agg.join(df_cpa_agg, how='left', on=[RPT_COL_ACCOUNT, RPT_COL_CAMPAIGN_TYPE], lsuffix="", rsuffix="_agg")
# print("merged avg cpa\\n", df_comparison.to_string())

# calculate performance of CPA relative to categorical average
df_comparison['cpa_perf'] = (df_comparison[RPT_COL_COST_PER_CONV + '_agg'] - df_comparison[RPT_COL_COST_PER_CONV]) / df_comparison[RPT_COL_COST_PER_CONV + '_agg']

# print("daily budget\\n", df_comparison[RPT_COL_DAILY_BUDGET]['last'])

# calc new daily budget for all campaigns
df_comparison[BULK_COL_DAILY_BUDGET + '_'] = df_comparison[RPT_COL_DAILY_BUDGET]['last'] * (1+budget_increase)

# Make budget adj if over threshold and non-zero
df_adj = df_comparison[ (df_comparison['cpa_perf'] > performance_threshold) & (df_comparison[BULK_COL_DAILY_BUDGET + '_'] > 0)].copy() 

if not df_adj.empty:

    print("df_adj\\n", df_adj.to_string())
    
    df_adj.reset_index(level='Campaign', inplace=True)

    # annotate via Marin Dimensions
    def rowFunc(row):
        return 'CPA is {:,.2f}% lower than avg ${:,.2f} for Account/CampaignType {}. Budget increased {:,.2f}% on {}'.format(
            100*row['cpa_perf'].values[0], \
            row[RPT_COL_COST_PER_CONV + "_agg"].values[0], \
            row.name, \
            budget_increase * 100, \
            datetime.date.today()
        )

    df_adj[BULK_COL_AUTOMATION_BUDGETBOOST] = df_adj.apply(rowFunc, axis=1)

    df_adj.reset_index(inplace=True)

    # print("df_adj\\n", df_adj.to_string())

    # bulk output
    outputDf = df_adj[[RPT_COL_ACCOUNT, RPT_COL_CAMPAIGN, RPT_COL_DAILY_BUDGET + '_', BULK_COL_AUTOMATION_BUDGETBOOST]].copy()
    outputDf.rename(columns={RPT_COL_DAILY_BUDGET + '_': RPT_COL_DAILY_BUDGET}, inplace=True)
    outputDf = outputDf.round(2).droplevel(1, axis=1)
    # print("output\\n", outputDf.to_string())

else:

    print("No qualified campaigns exceeded performance threshold of {:,.2f}%".format(performance_threshold * 100))
    outputDf = outputDf.iloc[0:0]

Post generated on 2024-05-15 07:44:05 GMT

comments powered by Disqus