Script 21: Budget Boost for Performing Campaigns

Script 21: Budget Boost for Performing Campaigns

Purpose:

The Python script adjusts campaign budgets by increasing them by 5% if the Cost Per Acquisition (CPA) performance is 10% better than the average of peers within the same account.

To Elaborate

The script is designed to optimize advertising campaign budgets by analyzing the Cost Per Acquisition (CPA) performance over a 30-day period, excluding the most recent three days to account for conversion lag. It compares the CPA of individual campaigns against the average CPA of similar campaigns within the same account. If a campaign’s CPA is at least 10% better than the average, the script increases its budget by 5%. This approach aims to allocate more resources to high-performing campaigns, thereby maximizing the return on investment. The script processes data to identify eligible campaigns and adjusts their budgets accordingly, ensuring that only campaigns meeting the performance threshold receive a budget boost.

Walking Through the Code

  1. Initialization and Setup
    • The script begins by setting up necessary constants and initializing columns in the output DataFrame for daily budget and budget boost annotations.
    • User-changeable parameters include performance_threshold (set to 0.10) and budget_increase (set to 0.05).
  2. Data Preparation
    • The script reduces the input DataFrame to essential columns and fills missing campaign types with ‘NA’.
    • It filters the data to include only the last 30 days, excluding the most recent three days.
  3. Data Aggregation
    • The script aggregates data by summing costs and conversions, and takes the latest campaign budget for each campaign.
    • It calculates the CPA for each campaign and the average CPA for each account and campaign type.
  4. Performance Comparison
    • The script merges the campaign CPA data with the average CPA data to facilitate comparison.
    • It calculates the CPA performance relative to the average CPA.
  5. Budget Adjustment
    • Campaigns with a CPA performance exceeding the threshold are identified, and their budgets are increased by the specified percentage.
    • The script annotates these adjustments and prepares the final output DataFrame with updated budgets.
  6. Output Preparation
    • If no campaigns meet the criteria, the script outputs an empty DataFrame.
    • Otherwise, it formats and rounds the output data for further processing or reporting.

Vitals

  • Script ID : 21
  • Client ID / Customer ID: 309909744 / 14196
  • Action Type: Bulk Upload (Preview)
  • Item Changed: Campaign
  • Output Columns: Account, Campaign, Daily Budget, AUTOMATION - Budget Boost
  • Linked Datasource: M1 Report
  • Reference Datasource: None
  • Owner: Michael Huang (mhuang@marinsoftware.com)
  • Created by Michael Huang on 2023-03-08 22:18
  • Last Updated by dwaidhas@marinsoftware.com on 2023-12-06 04:01
> See it in Action

Python Code

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
#
# Boost Campaign Budget if CPA performance is better than peer average by preset threshold
#
#
# Author: Michael S. Huang
# Date: 2023-02-18

RPT_COL_CAMPAIGN = 'Campaign'
RPT_COL_DATE = 'Date'
RPT_COL_ACCOUNT = 'Account'
RPT_COL_CAMPAIGN_ID = 'Campaign ID'
RPT_COL_CAMPAIGN_TYPE = 'Campaign Type'
RPT_COL_CAMPAIGN_STATUS = 'Campaign Status'
RPT_COL_DAILY_BUDGET = 'Daily Budget'
RPT_COL_PUB_COST = 'Pub. Cost $'
RPT_COL_COST_PER_CONV = 'Cost/Conv. $'
RPT_COL_ROAS = 'ROAS'
RPT_COL_AVG_CPC = 'Avg. CPC $'
RPT_COL_CONV_RATE = 'Conv. Rate %'
RPT_COL_CTR = 'CTR %'
RPT_COL_CONV = 'Conv.'
RPT_COL_REVENUE = 'Revenue $'
RPT_COL_SEARCH_LOSTTOPISBUDGET = 'Search Lost Top IS (Budget) %'
RPT_COL_SEARCH_LOSTTOPISRANK = 'Search Lost Top IS (Rank) %'
RPT_COL_LOST_IMPRSHAREBUDGET = 'Lost Impr. Share (Budget) %'
RPT_COL_LOST_IMPRSHARERANK = 'Lost Impr. Share (Rank) %'
RPT_COL_AVG_BID = 'Avg. Bid $'
RPT_COL_HIST_QS = 'Hist. QS'
RPT_COL_IMPR = 'Impr.'
RPT_COL_CLICKS = 'Clicks'
BULK_COL_ACCOUNT = 'Account'
BULK_COL_CAMPAIGN = 'Campaign'
BULK_COL_DAILY_BUDGET = 'Daily Budget'
BULK_COL_AUTOMATION_BUDGETBOOST = 'AUTOMATION - Budget Boost'

outputDf[BULK_COL_DAILY_BUDGET] = numpy.nan
outputDf[BULK_COL_AUTOMATION_BUDGETBOOST] = numpy.nan

# CPA Performance Threshold and Campaign Budget increase step size
performance_threshold = 0.10
budget_increase = 0.05

# when missing CONV, CPA is INF. Treat it as missing value.
pd.set_option('mode.use_inf_as_na', True)

# reduce to needed columns, fill in missing campaign type
df_reduced = inputDf[[RPT_COL_ACCOUNT, RPT_COL_CAMPAIGN_TYPE, RPT_COL_CAMPAIGN, RPT_COL_DATE, RPT_COL_DAILY_BUDGET, RPT_COL_PUB_COST, RPT_COL_CONV]].copy()
df_reduced.fillna({RPT_COL_CAMPAIGN_TYPE: 'NA'}, inplace=True)

# # limit to non-brand campaigns
# non_brand = (df_reduced[RPT_COL_CAMPAIGN].map(lambda x: 'NB' in x)) | (df_reduced[RPT_COL_CAMPAIGN].map(lambda x: 'nonbrand' in x.lower()))
# df_reduced = df_reduced[non_brand]

# print("reduced input\\n", df_reduced.to_string())

# 30-day lookback without most recent 3 days due to conversion lag
start_date = pd.to_datetime(datetime.date.today() - datetime.timedelta(days=33))
end_date = pd.to_datetime(datetime.date.today() - datetime.timedelta(days=3))
df_reduced = df_reduced[ (df_reduced[RPT_COL_DATE] >= start_date) & (df_reduced[RPT_COL_DATE] <= end_date) ]
if (df_reduced.shape[0] > 0):
    print("reduced dates\\n", min(df_reduced[RPT_COL_DATE]), max(df_reduced[RPT_COL_DATE]))
else:
    print("no more input to process")

# aggregate over remaining date range, summing cost/conv and take latest campaign budget
# remove 0 conv
agg_func_selection = {
    RPT_COL_DAILY_BUDGET: ['last'],
    RPT_COL_PUB_COST: ['sum'],
    RPT_COL_CONV: ['sum']
}
df_campaign_agg = df_reduced.groupby([RPT_COL_ACCOUNT, RPT_COL_CAMPAIGN_TYPE, RPT_COL_CAMPAIGN]).agg(agg_func_selection)

# recalc cpa
df_campaign_agg[RPT_COL_COST_PER_CONV] = df_campaign_agg[RPT_COL_PUB_COST] / df_campaign_agg[RPT_COL_CONV]
# print("recalc cpa for campaign w conv\\n", df_campaign_agg.to_string())

# calc avg cpa by account and campaign type
agg_func_selection = {
    RPT_COL_DAILY_BUDGET: ['mean'],
    RPT_COL_PUB_COST: ['sum'],
    RPT_COL_CONV: ['sum']
}
df_cpa_agg = df_reduced.groupby([RPT_COL_ACCOUNT, RPT_COL_CAMPAIGN_TYPE]).agg(agg_func_selection)
df_cpa_agg[RPT_COL_COST_PER_CONV] = df_cpa_agg[RPT_COL_PUB_COST] / df_cpa_agg[RPT_COL_CONV]
# print("avg cpa\\n", df_cpa_agg.to_string())

# merge avg cpa to input df to make comparison
df_comparison = df_campaign_agg.join(df_cpa_agg, how='left', on=[RPT_COL_ACCOUNT, RPT_COL_CAMPAIGN_TYPE], lsuffix="", rsuffix="_agg")
# print("merged avg cpa\\n", df_comparison.to_string())

# calculate performance of CPA relative to categorical average
df_comparison['cpa_perf'] = (df_comparison[RPT_COL_COST_PER_CONV + '_agg'] - df_comparison[RPT_COL_COST_PER_CONV]) / df_comparison[RPT_COL_COST_PER_CONV + '_agg']

# print("daily budget\\n", df_comparison[RPT_COL_DAILY_BUDGET]['last'])

# calc new daily budget for all campaigns
df_comparison[BULK_COL_DAILY_BUDGET + '_'] = df_comparison[RPT_COL_DAILY_BUDGET]['last'] * (1+budget_increase)

# Make budget adj if over threshold and non-zero
df_adj = df_comparison[ (df_comparison['cpa_perf'] > performance_threshold) & (df_comparison[BULK_COL_DAILY_BUDGET + '_'] > 0)].copy() 

if not df_adj.empty:

    print("df_adj\\n", df_adj.to_string())
    
    df_adj.reset_index(level='Campaign', inplace=True)

    # annotate via Marin Dimensions
    def rowFunc(row):
        return 'CPA is {:,.2f}% lower than avg ${:,.2f} for Account/CampaignType {}. Budget increased {:,.2f}% on {}'.format(
            100*row['cpa_perf'].values[0], \
            row[RPT_COL_COST_PER_CONV + "_agg"].values[0], \
            row.name, \
            budget_increase * 100, \
            datetime.date.today()
        )

    df_adj[BULK_COL_AUTOMATION_BUDGETBOOST] = df_adj.apply(rowFunc, axis=1)

    df_adj.reset_index(inplace=True)

    # print("df_adj\\n", df_adj.to_string())

    # bulk output
    outputDf = df_adj[[RPT_COL_ACCOUNT, RPT_COL_CAMPAIGN, RPT_COL_DAILY_BUDGET + '_', BULK_COL_AUTOMATION_BUDGETBOOST]].copy()
    outputDf.rename(columns={RPT_COL_DAILY_BUDGET + '_': RPT_COL_DAILY_BUDGET}, inplace=True)
    outputDf = outputDf.round(2).droplevel(1, axis=1)
    # print("output\\n", outputDf.to_string())

else:

    print("No qualified campaigns exceeded performance threshold of {:,.2f}%".format(performance_threshold * 100))
    outputDf = outputDf.iloc[0:0]

Post generated on 2025-03-11 01:25:51 GMT

comments powered by Disqus