Script 165: Intraday Adj Google tCPA and Budget
Purpose
Adjust the tCPA and Daily Budget of Google Campaigns based on the ROAS and spend over a specific time period.
To Elaborate
This Python script adjusts the tCPA (target cost per acquisition) and daily budget of Google Campaigns based on the ROAS (return on ad spend) and spend over a specific time period. The script applies different adjustment criteria to determine the new tCPA and budget for each campaign. The goal is to optimize campaign performance by adjusting the bidding strategy and budget allocation.
The script uses predefined criteria for each campaign to determine the adjustments. The criteria include ranges for ROAS, spend, and custom metrics. The script loops through each criteria and applies the corresponding adjustments to the campaigns that meet the criteria. The adjusted campaigns are then stored in separate dataframes for further processing.
The script also checks if the adjusted tCPA is below a minimum threshold and adjusts it to the threshold if necessary. Finally, the script merges the adjusted campaigns from all dataframes into a single output dataframe.
Overall, this script automates the process of adjusting tCPA and daily budget for Google Campaigns based on performance metrics, allowing for more efficient campaign management and optimization.
Vitals
- Script ID : 165
- Client ID / Customer ID: 1306925431 / 60269477
- Action Type: Bulk Upload (Preview)
- Item Changed: Campaign
- Output Columns: Account, Campaign, Publisher Target CPA, Daily Budget, Last Intraday Adj
- Linked Datasource: M1 Report
- Reference Datasource: None
- Owner: Byron Porter (bporter@marinsoftware.com)
- Created by Byron Porter on 2023-06-07 04:29
- Last Updated by simon@rainmakeradventures.com on 2023-12-06 04:01
> See it in Action
Python Code
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
#
# Publisher Budget and Target CPA Adjustment - Intraday
#
#
# Author: Byron Porter
# Date: 2023-07-24
#
# define criteria for intraday campaign tCPA and Daily Budget adjustment
# note: MIN values are inclusive; MAX values are non-inclusive
first_campaign_adj_criteria = [
# format: (min roas, max roas, min cost, budget adj),
(.0, .25, 100.00, 25.00)
]
second_campaign_adj_criteria = [
# format: (min roas, max roas, budget adj),
(.25, .50, .50),
(.5, .75, .30)
]
third_campaign_adj_criteria = [
# format: (min roas, max roas, min custom (spend/daily cap), max custom (spend/daily cap), tCPA adj, budget adj),
(1, 1.25, .50, 999999.0, 0, .10),
(1.25, 1.50, .0, .50, .10, 0),
(1.25, 1.50, .50, 999999.0, 0, .20),
(1.50, 2, .0, .50, .10, 0),
(1.50, 2, .50, 999999.0, 0, .30),
(2, 3, .0, .50, .10, 0),
(2, 3, .50, 999999.0, 0, .40)
]
fourth_campaign_adj_criteria = [
# format: (min roas, tCPA adj, budget adj),
(3, .10, .50)
]
fifth_campaign_adj_criteria = [
# format: (min roas, max roas, budget adj, tCPA adj),
(.75, 1, .10, .05)
]
# define column parameters
RPT_COL_CAMPAIGN = 'Campaign'
RPT_COL_ACCOUNT = 'Account'
RPT_COL_STRATEGY = 'Strategy'
RPT_COL_CAMPAIGN_STATUS = 'Campaign Status'
RPT_COL_DAILY_BUDGET = 'Daily Budget'
RPT_COL_ROAS = 'CLICKS ROAS'
RPT_COL_PUBLISHER_TARGETCPA = 'Publisher Target CPA'
RPT_COL_PUB_COST = 'Pub. Cost $'
RPT_COL_CAMP_MATURITY = 'Campaign Maturity'
RPT_COL_INTRADAY_ADJUSTED = 'Last Intraday Adj'
BULK_COL_ACCOUNT = 'Account'
BULK_COL_CAMPAIGN = 'Campaign'
BULK_COL_DAILY_BUDGET = 'Daily Budget'
BULK_COL_PUBLISHER_TARGETCPA = 'Publisher Target CPA'
BULK_COL_INTRADAY_ADJUSTED = 'Last Intraday Adj'
# Assign current timestamp and day of the month to parameters
timestmp = datetime.datetime.now(CLIENT_TIMEZONE).strftime('%Y-%m-%d %I:%M:%S %p')
today = datetime.datetime.now(CLIENT_TIMEZONE)
day = today.day
# create temp columns to store new values and default to empty
TMP_BUDGET = RPT_COL_DAILY_BUDGET + '_'
inputDf[TMP_BUDGET] = np.nan
TMP_TARGETCPA = RPT_COL_PUBLISHER_TARGETCPA + '_'
inputDf[TMP_TARGETCPA] = np.nan
TMP_PERCENTOFBUDGET = RPT_COL_PUB_COST + '_'
inputDf[TMP_PERCENTOFBUDGET] = np.nan
# assign calculated spend percentage of daily budget to temp column
inputDf[TMP_PERCENTOFBUDGET] = inputDf[RPT_COL_PUB_COST] / inputDf[RPT_COL_DAILY_BUDGET]
######################## Changes for First ROAS Criteria ########################
# create DataFrame for campaigns that meet first ROAS criteria
firstDf = inputDf.copy()
# loop through first ROAS criteria
for (min_roas, max_roas, min_cost, budget_adj) in first_campaign_adj_criteria:
print(f"Applying first adj criteria: min roas={min_roas}, max roas={max_roas}, min cost={min_cost}, budget adj={budget_adj}")
matched_campaigns = (firstDf[RPT_COL_ROAS] >= min_roas) & \
(firstDf[RPT_COL_ROAS] < max_roas) & \
(firstDf[RPT_COL_PUB_COST] >= min_cost)
if sum(matched_campaigns) > 0:
print("matched campaigns: ", sum(matched_campaigns))
print("new budget", budget_adj)
firstDf.loc[matched_campaigns, TMP_BUDGET] = budget_adj
print("adj applied", tableize(firstDf.loc[matched_campaigns]))
# define a new DataFrame to be populated with only the rows needed for upload, i.e there's a budget adjustment
changed_firstDf = pd.DataFrame()
# find campaigns in the firstDf DataFrame with an adjusted budget and copy them to a new DataFrame
changed = (firstDf[TMP_BUDGET].notnull() & (firstDf[RPT_COL_DAILY_BUDGET] != firstDf[TMP_BUDGET]))
if sum(changed) > 0:
print("== Campaigns with Budget Adjusted ==", tableize(firstDf.loc[changed]))
# assign changed rows to a DataFrame that will be used in final outputDf
cols = [RPT_COL_ACCOUNT, RPT_COL_CAMPAIGN, TMP_BUDGET, RPT_COL_PUBLISHER_TARGETCPA, RPT_COL_INTRADAY_ADJUSTED]
changed_firstDf = firstDf.loc[changed, cols].copy() \
.rename(columns = {TMP_BUDGET: BULK_COL_DAILY_BUDGET})
# populate intraday adj dimension with timestamp
changed_firstDf[RPT_COL_INTRADAY_ADJUSTED] = timestmp
print("changed_firstDf", tableize(changed_firstDf))
######################## Changes for Second ROAS Criteria ########################
# create DataFrame for campaigns that meet second ROAS criteria
secondDf = inputDf.copy()
# loop through second ROAS criteria
for (min_roas, max_roas, budget_adj) in second_campaign_adj_criteria:
print(f"Applying second adj criteria: min roas={min_roas}, max roas={max_roas}, budget adj={budget_adj}")
matched_campaigns = (secondDf[RPT_COL_ROAS] >= min_roas) & \
(secondDf[RPT_COL_ROAS] < max_roas)
if sum(matched_campaigns) > 0:
print("matched campaigns: ", sum(matched_campaigns))
new_budget = (secondDf.loc[matched_campaigns, RPT_COL_PUB_COST] * budget_adj)
print("new_budget", new_budget)
secondDf.loc[matched_campaigns, TMP_BUDGET] = new_budget
print("adj applied", tableize(secondDf.loc[matched_campaigns]))
# define a new DataFrame to be populated with only the rows needed for upload, i.e there's a budget adjustment
changed_secondDf = pd.DataFrame()
# find campaigns in the firstDf DataFrame with an adjusted budget and copy them to a new DataFrame
changed = (secondDf[TMP_BUDGET].notnull() & (secondDf[RPT_COL_DAILY_BUDGET] != secondDf[TMP_BUDGET]))
if sum(changed) > 0:
print("== Campaigns with Budget Adjusted ==", tableize(secondDf.loc[changed]))
# assign changed rows to a DataFrame that will be used in final outputDf
cols = [RPT_COL_ACCOUNT, RPT_COL_CAMPAIGN, TMP_BUDGET, RPT_COL_PUBLISHER_TARGETCPA, RPT_COL_INTRADAY_ADJUSTED]
changed_secondDf = secondDf.loc[changed, cols].copy() \
.rename(columns = {TMP_BUDGET: BULK_COL_DAILY_BUDGET})
# populate intraday adj dimension with timestamp
changed_secondDf[RPT_COL_INTRADAY_ADJUSTED] = timestmp
else:
print("Empty changed_secondDf")
changed_secondDf = changed_secondDf.iloc[0:0]
######################## Changes for Third ROAS Criteria ########################
# create DataFrame for campaigns that meet second ROAS criteria
thirdDf = inputDf.copy()
# loop through second ROAS criteria
for (min_roas, max_roas, min_custom, max_custom, tcpa_adj, budget_adj) in third_campaign_adj_criteria:
print(f"Applying third adj criteria: min roas={min_roas}, max roas={max_roas}, min custom={min_custom}, max custom={max_custom}, tcpa adj={tcpa_adj}, budget adj={budget_adj}")
matched_campaigns = (thirdDf[RPT_COL_ROAS] >= min_roas) & \
(thirdDf[RPT_COL_ROAS] < max_roas) & \
(thirdDf[TMP_PERCENTOFBUDGET] >= min_custom) & \
(thirdDf[TMP_PERCENTOFBUDGET] < max_custom)
if sum(matched_campaigns) > 0:
print("matched campaigns: ", sum(matched_campaigns))
new_budget = thirdDf.loc[matched_campaigns, RPT_COL_DAILY_BUDGET] * (1 + budget_adj)
thirdDf.loc[matched_campaigns, TMP_BUDGET] = new_budget
new_tcpa = thirdDf.loc[matched_campaigns, RPT_COL_PUBLISHER_TARGETCPA] * (1 + tcpa_adj)
thirdDf.loc[matched_campaigns, TMP_TARGETCPA] = new_tcpa
#print("adj applied", tableize(thirdDf.loc[matched_campaigns]))
# define a new DataFrame to be populated with only the rows needed for upload, i.e there's a budget adjustment
changed_thirdDf = pd.DataFrame()
# find campaigns in the firstDf DataFrame with an adjusted budget and copy them to a new DataFrame
changed = (thirdDf[TMP_BUDGET].notnull() & (thirdDf[RPT_COL_DAILY_BUDGET] != thirdDf[TMP_BUDGET])) | \
(thirdDf[TMP_TARGETCPA].notnull() & (thirdDf[RPT_COL_PUBLISHER_TARGETCPA] != thirdDf[TMP_TARGETCPA]))
if sum(changed) > 0:
print("== Campaigns with Budget Adjusted By Third Criteria ==", tableize(thirdDf.loc[changed]))
# assign changed rows to a DataFrame that will be used in final outputDf
cols = [RPT_COL_ACCOUNT, RPT_COL_CAMPAIGN, TMP_BUDGET, TMP_TARGETCPA, RPT_COL_INTRADAY_ADJUSTED]
changed_thirdDf = thirdDf.loc[changed, cols].copy() \
.rename(columns = { \
TMP_BUDGET: BULK_COL_DAILY_BUDGET, \
TMP_TARGETCPA: BULK_COL_PUBLISHER_TARGETCPA \
})
# populate intraday adj dimension with timestamp
changed_thirdDf[RPT_COL_INTRADAY_ADJUSTED] = timestmp
print("== Campaigns with Budget Adjusted By Third Criteria ==", tableize(changed_thirdDf))
else:
print("Empty changed_thirdDf - no third criteria campaign budget changes for")
changed_thirdDf = changed_thirdDf.iloc[0:0]
######################## Changes for Fourth ROAS Criteria ########################
# create DataFrame for campaigns that meet fourth ROAS criteria
fourthDf = inputDf.copy()
# loop through fourth ROAS criteria
for (min_roas, tcpa_adj, budget_adj) in fourth_campaign_adj_criteria:
print(f"Applying fourth adj criteria: min roas={min_roas}, tcpa adj={tcpa_adj}, budget adj={budget_adj}")
matched_campaigns = (fourthDf[RPT_COL_ROAS] >= min_roas)
if sum(matched_campaigns) > 0:
print("matched campaigns: ", sum(matched_campaigns))
new_budget = fourthDf.loc[matched_campaigns, RPT_COL_DAILY_BUDGET] * (1 + budget_adj)
fourthDf.loc[matched_campaigns, TMP_BUDGET] = new_budget
new_tcpa = fourthDf.loc[matched_campaigns, RPT_COL_PUBLISHER_TARGETCPA] * (1 + tcpa_adj)
fourthDf.loc[matched_campaigns, TMP_TARGETCPA] = new_tcpa
print("adj applied", tableize(fourthDf.loc[matched_campaigns]))
# define a new DataFrame to be populated with only the rows needed for upload, i.e there's a budget adjustment
changed_fourthDf = pd.DataFrame()
# find campaigns in the firstDf DataFrame with an adjusted budget and copy them to a new DataFrame
changed = (fourthDf[TMP_BUDGET].notnull() & (fourthDf[RPT_COL_DAILY_BUDGET] != fourthDf[TMP_BUDGET]))
if sum(changed) > 0:
print("== Campaigns with Budget Adjusted ==", tableize(fourthDf.loc[changed]))
# assign changed rows to a DataFrame that will be used in final outputDf
cols = [RPT_COL_ACCOUNT, RPT_COL_CAMPAIGN, TMP_BUDGET, TMP_TARGETCPA, RPT_COL_INTRADAY_ADJUSTED]
changed_fourthDf = fourthDf.loc[changed, cols].copy() \
.rename(columns = { \
TMP_BUDGET: BULK_COL_DAILY_BUDGET, \
TMP_TARGETCPA: BULK_COL_PUBLISHER_TARGETCPA \
})
# populate intraday adj dimension with timestamp
changed_fourthDf[RPT_COL_INTRADAY_ADJUSTED] = timestmp
print("changed_firstDf", tableize(changed_fourthDf))
######################## Changes for Fifth ROAS Criteria ########################
# create DataFrame for campaigns that meet fourth ROAS criteria
fifthDf = inputDf.copy()
# loop through fourth ROAS criteria
for (min_roas, max_roas, budget_adj, tcpa_adj) in fifth_campaign_adj_criteria:
print(f"Applying fifth adj criteria: min roas={min_roas}, max roas={max_roas}, budget adj={budget_adj}, tcpa adj={tcpa_adj}")
matched_campaigns = (fifthDf[RPT_COL_ROAS] >= min_roas) & \
(fifthDf[RPT_COL_ROAS] < max_roas)
if sum(matched_campaigns) > 0:
print("matched campaigns: ", sum(matched_campaigns))
new_budget = fifthDf.loc[matched_campaigns, RPT_COL_DAILY_BUDGET] * (1 + budget_adj)
fifthDf.loc[matched_campaigns, TMP_BUDGET] = new_budget
new_tcpa = fifthDf.loc[matched_campaigns, RPT_COL_PUBLISHER_TARGETCPA] * (1 + tcpa_adj)
fifthDf.loc[matched_campaigns, TMP_TARGETCPA] = new_tcpa
print("adj applied", tableize(fifthDf.loc[matched_campaigns]))
# define a new DataFrame to be populated with only the rows needed for upload, i.e there's a budget adjustment
changed_fifthDf = pd.DataFrame()
# find campaigns in the fifthDf DataFrame with an adjusted budget and copy them to a new DataFrame
changed = (fifthDf[TMP_BUDGET].notnull() & (fifthDf[RPT_COL_DAILY_BUDGET] != fifthDf[TMP_BUDGET]))
if sum(changed) > 0:
print("== Campaigns with Budget Adjusted ==", tableize(fifthDf.loc[changed]))
# assign changed rows to a DataFrame that will be used in final outputDf
cols = [RPT_COL_ACCOUNT, RPT_COL_CAMPAIGN, TMP_BUDGET, TMP_TARGETCPA, RPT_COL_INTRADAY_ADJUSTED]
changed_fifthDf = fifthDf.loc[changed, cols].copy() \
.rename(columns = { \
TMP_BUDGET: BULK_COL_DAILY_BUDGET, \
TMP_TARGETCPA: BULK_COL_PUBLISHER_TARGETCPA \
})
# populate intraday adj dimension with timestamp
changed_fifthDf[RPT_COL_INTRADAY_ADJUSTED] = timestmp
print("changed_fifthDf", tableize(changed_fifthDf))
# Merge defined data, exlcuding those that are empty, and print the resulting outputDf
dataframes = [changed_firstDf, changed_secondDf, changed_thirdDf, changed_fourthDf, changed_fifthDf]
non_empty_dataframes = [df for df in dataframes if not df.empty]
if non_empty_dataframes:
outputDf = pd.concat(non_empty_dataframes)
else:
print("Empty outputDf")
outputDf = outputDf.iloc[0:0]
if (outputDf[BULK_COL_PUBLISHER_TARGETCPA] < 2.50).any():
outputDf.loc[outputDf[BULK_COL_PUBLISHER_TARGETCPA] < 2.50, BULK_COL_PUBLISHER_TARGETCPA] = 2.50
print("outputDf:", tableize(outputDf))
else:
print("outputDf", tableize(outputDf))
Post generated on 2024-05-15 07:44:05 GMT