Script 1555: Script AutoTag Pacing Status
Purpose:
The Python script categorizes pacing percentages into descriptive tags such as ‘On Target’, ‘Under Pacing’, ‘Over Pacing’, etc., based on predefined ranges.
To Elaborate
The script is designed to update a dimension called ‘Impr Pacing’ with descriptive tags that reflect the pacing status of a campaign. It uses predefined ranges to categorize pacing percentages into labels like ‘On Target’, ‘Under Pacing’, ‘Over Pacing’, ‘Significantly Over Pacing’, and ‘Significantly Under Pacing’. These categories help in understanding whether a campaign is performing as expected or if adjustments are needed. The script processes pacing values, cleans them, converts them to percentages, and then assigns the appropriate category based on the defined ranges. This categorization aids in structured budget allocation and campaign performance analysis.
Walking Through the Code
- Configurable Pacing Range Definitions:
- The script begins by defining a dictionary
PACING_RANGES
that maps descriptive tags to specific numeric ranges. These ranges are user-configurable and determine how pacing values are categorized.
- The script begins by defining a dictionary
- Categorize Pacing Function:
- The function
categorize_pacing
takes a pacing value as input, cleans it by removing any percentage signs, and converts it to a float. - It scales the value by multiplying by 100 to convert it from a decimal to a percentage.
- The function iterates over the
PACING_RANGES
dictionary to find the appropriate category for the pacing value based on the defined ranges. - If the value falls within a range, the corresponding category is returned; otherwise, ‘Undefined’ is returned for unexpected cases.
- The function
- Data Processing:
- The script reads pacing data from a primary data source and applies the
categorize_pacing
function to each pacing value in the dataset. - The categorized pacing values are stored in a new column ‘Impr. Pacing’ in the output DataFrame.
- The script reads pacing data from a primary data source and applies the
- Output Preparation:
- The script prepares the output DataFrame by selecting relevant columns and updating the ‘Impr. Pacing’ column with the categorized values.
- The final output is structured to include account, campaign, campaign ID, and the newly categorized pacing status.
Vitals
- Script ID : 1555
- Client ID / Customer ID: 1306928453 / 60270539
- Action Type: Bulk Upload
- Item Changed: Campaign
- Output Columns: Account, Campaign, Campaign ID, Impr. Pacing
- Linked Datasource: M1 Report
- Reference Datasource: None
- Owner: Grégory Pantaine (gpantaine@marinsoftware.com)
- Created by Grégory Pantaine on 2024-12-05 14:15
- Last Updated by Michael Huang on 2025-03-10 02:45
> See it in Action
Python Code
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
##
## name: Script AutoTag - Pacing Status
## description: Update the 'Impr Pacing' dimension with a worded value,
## such as on target/over pacing etc.
## The breakdown should be as follows:
## if value is betwen -1% & +5% , value output should be set as: 'On Target'
## if value is betwen -1% & -15% , value output should be set as: 'Under Pacing'
## if value is betwen +5% & +20% , value output should be set as: 'Over Pacing'
## if value is above +20% , value output should be set as: 'Significantly Over Pacing'
## if value is below -15% , value output should be set as: 'Significantly Under Pacing'##
##
## author: ChatGPT & Gregory Pantaine
## created: 2024-12-05
##
##
## name: Script AutoTag - Pacing Status
## description: Update the 'Impr Pacing' dimension with a worded value,
## such as on target/over pacing etc.
##
## author: ChatGPT & Gregory Pantaine
## created: 2024-12-05
##
# Configurable Pacing Range Definitions
PACING_RANGES = {
'On Target': (99, 105),
'Under Pacing': (85, 99),
'Over Pacing': (105, 120),
'Significantly Over Pacing': (120, float('inf')),
'Significantly Under Pacing': (-float('inf'), 85)
## 'On Target': (-1, 5),
## 'Under Pacing': (-15, -2),
## 'Over Pacing': (6, 20),
## 'Significantly Over Pacing': (21, float('inf')),
## 'Significantly Under Pacing': (-float('inf'), -16)
}
def categorize_pacing(pacing_value):
try:
# Convert to string and remove '%' if present
pacing_value_cleaned = str(pacing_value).replace('%', '').strip()
# Convert to float and scale up if necessary
pacing_percentage = float(pacing_value_cleaned) # Convert to float
# value in report is actually decimal, not percentage, so multiply by 100
pacing_percentage *= 100
for category, (lower, upper) in PACING_RANGES.items():
if lower <= pacing_percentage < upper:
# print(f"Value: {pacing_percentage}%, Category: {category}") # Debug print
return category
except (ValueError, TypeError) as e:
print(f"Error processing value {pacing_value}: {e}") # Debug print
pass
return 'Undefined' # Fallback for unexpected cases
today = datetime.datetime.now(CLIENT_TIMEZONE).date()
# primary data source and columns
inputDf = dataSourceDict["1"]
RPT_COL_CAMPAIGN = 'Campaign'
RPT_COL_CAMPAIGN_ID = 'Campaign ID'
RPT_COL_ACCOUNT = 'Account'
RPT_COL_CAMPAIGN_STATUS = 'Campaign Status'
RPT_COL_PACING = 'Pacing %'
RPT_COL_PUB_COST = 'Pub. Cost $'
RPT_COL_STRATEGY = 'Strategy'
RPT_COL_IMPR_PACING = 'Impr. Pacing'
# output columns and initial values
BULK_COL_ACCOUNT = 'Account'
BULK_COL_CAMPAIGN = 'Campaign'
BULK_COL_CAMPAIGN_ID = 'Campaign ID'
BULK_COL_IMPR_PACING = 'Impr. Pacing'
outputDf[BULK_COL_IMPR_PACING] = "<<YOUR VALUE>>"
print(inputDf[RPT_COL_PACING].head())
# Pacing categorization
inputDf[BULK_COL_IMPR_PACING] = inputDf[RPT_COL_PACING].apply(categorize_pacing)
debugDf=inputDf
outputDf = inputDf[[RPT_COL_ACCOUNT, RPT_COL_CAMPAIGN, RPT_COL_CAMPAIGN_ID, RPT_COL_IMPR_PACING]]
Post generated on 2025-03-11 01:25:51 GMT