Script 1511: Dimension Value From Campaign Name
Purpose
The Python script extracts pacing dates and goals from campaign names in a dataset.
To Elaborate
The script is designed to process a dataset containing campaign information, specifically focusing on extracting pacing start and end dates, as well as the campaign goal from the campaign name. It handles various date formats and delimiters, and identifies specific goal types such as “Search”, “RGD”, “SGD”, “SBD”, “CPM”, and “MS”. The script processes only those rows where the goal information is missing, ensuring that any extracted data is added to the dataset. This allows for a structured and automated way to populate missing campaign details based on naming conventions, which is crucial for accurate reporting and analysis in marketing and advertising contexts.
Walking Through the Code
- Date Conversion Function:
- A function
convert_date
is defined to handle date strings, attempting to parse them with both four-digit and two-digit year formats. This ensures flexibility in handling various date formats.
- A function
- Information Extraction Function:
- The
extract_info_from_campaign_name_enhanced
function uses regular expressions to identify date patterns and goal types within the campaign name. It extracts start and end dates and determines the goal based on specific keywords.
- The
- Data Preparation:
- The script renames columns in the input DataFrame to match expected names and removes unnecessary columns. It also cleans column names by stripping any leading or trailing spaces.
- Filtering and Processing:
- The script filters the DataFrame to include only rows where the goal is missing. It ensures campaign names are treated as strings to prevent errors during processing.
- Data Extraction and Population:
- For each filtered row, the script extracts start and end dates and goals using the previously defined function. It updates the DataFrame with this extracted information.
- Final Output:
- The script filters the DataFrame to retain only rows with extracted goal information and selects specific columns for the final output. The resulting DataFrame is printed to verify the extracted information.
Vitals
- Script ID : 1511
- Client ID / Customer ID: 1306928345 / 60270139
- Action Type: Bulk Upload
- Item Changed: Campaign
- Output Columns: Account, Campaign, Goal, Pacing - End Date, Pacing - Start Date
- Linked Datasource: M1 Report
- Reference Datasource: None
- Owner: Arayla Caldwell (acaldwell@marinsoftware.com)
- Created by Arayla Caldwell on 2024-11-11 22:55
- Last Updated by Arayla Caldwell on 2024-11-12 16:30
> See it in Action
Python Code
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
## name: Dimension Tags from Campaign Name
## description: Extracts pacing dates and goal from campaign name
## author:
## created: 2023-12-04
## 7/1 Updated version with CPM and MS for Social Campaigns
## 6/27 Updated version w/o 'Target (Impr/Spend/Views)'
# Column Definitions
RPT_COL_CAMPAIGN = 'Campaign'
RPT_COL_ACCOUNT = 'Account'
RPT_COL_PACING_START_DATE = 'Pacing - Start Date'
RPT_COL_PACING_END_DATE = 'Pacing - End Date'
RPT_COL_GOAL = 'Goal'
# Function to convert date with enhanced logic to handle two-digit years
def convert_date(date_str):
if date_str is None:
return None
try:
# Try to parse date with four-digit year
return datetime.datetime.strptime(date_str, '%m/%d/%Y').date()
except ValueError:
try:
# Try to parse date with two-digit year
return datetime.datetime.strptime(date_str, '%m/%d/%y').date()
except ValueError:
return None
# Function to extract information from the campaign name with enhanced logic
def extract_info_from_campaign_name_enhanced(campaign_name):
# Updated date pattern to handle various delimiters and formats
date_pattern = r'\(?(\d{1,2}/\d{1,2}/\d{2,4})[-\s_]+(\d{1,2}/\d{1,2}/\d{2,4})\)?'
goal_pattern = r'(Search|RGD|SGD|SBD|CPM|MS)'
date_match = re.search(date_pattern, campaign_name)
goal_match = re.search(goal_pattern, campaign_name)
start_date_str, end_date_str = (date_match.groups() if date_match else (None, None))
goal_segment = goal_match.group(1) if goal_match else None
if 'CPM' in campaign_name:
goal = 'CPM'
elif 'MS' in campaign_name:
goal = 'MS'
else:
goal = 'MS' if goal_segment and 'Search' in goal_segment else 'CPM' if goal_segment in ['RGD', 'SGD', 'SBD'] else ''
start_date = convert_date(start_date_str)
end_date = convert_date(end_date_str)
return start_date, end_date, goal
# Rename columns to match the script's expectations
inputDf.columns = ['Campaign', 'Account', 'Pacing - Start Date', 'Pacing - End Date', 'Goal', 'Unnamed', 'Target (Impr/Spend/Views)']
# Drop the 'Unnamed' column
inputDf.drop(columns=['Unnamed'], inplace=True)
# Clean any leading/trailing spaces in the column names
inputDf.columns = inputDf.columns.str.strip()
# Filter for rows where the Goal column is blank and create a copy to avoid SettingWithCopyWarning
inputDf_filtered = inputDf[inputDf[RPT_COL_GOAL].isna()].copy()
# Ensure that the campaign names are treated as strings to avoid TypeError
inputDf_filtered[RPT_COL_CAMPAIGN] = inputDf_filtered[RPT_COL_CAMPAIGN].astype(str)
# Adding columns for extracted information to inputDf_filtered
inputDf_filtered[RPT_COL_PACING_START_DATE] = np.nan
inputDf_filtered[RPT_COL_PACING_END_DATE] = np.nan
inputDf_filtered[RPT_COL_GOAL] = np.nan
# Process each row in inputDf_filtered to extract information
for index, row in inputDf_filtered.iterrows():
start_date, end_date, goal = extract_info_from_campaign_name_enhanced(row[RPT_COL_CAMPAIGN])
if start_date or end_date or goal: # Include rows with any valid extracted information
inputDf_filtered.loc[index, RPT_COL_PACING_START_DATE] = start_date
inputDf_filtered.loc[index, RPT_COL_PACING_END_DATE] = end_date
inputDf_filtered.loc[index, RPT_COL_GOAL] = goal
# Filter inputDf_filtered for rows with extracted information
filteredDf = inputDf_filtered.dropna(subset=[RPT_COL_GOAL])
# Define the columns to be included in the output DataFrame
cols = [
RPT_COL_CAMPAIGN,
RPT_COL_ACCOUNT,
RPT_COL_PACING_START_DATE,
RPT_COL_PACING_END_DATE,
RPT_COL_GOAL
]
# Create output DataFrame with the selected columns
outputDf = filteredDf[cols].copy()
# Print the output DataFrame to check the extracted information
print("Output DataFrame with extracted information:")
print(outputDf)
Post generated on 2024-11-27 06:58:46 GMT