Script 1507: AdGroup CPA Outliers
Purpose:
The Python script identifies and tags AdGroups with abnormally high Cost Per Acquisition (CPA) performance within a campaign using a 33-day lookback period, excluding the most recent day.
To Elaborate
The script is designed to detect and tag AdGroups within advertising campaigns that exhibit unusually high Cost Per Acquisition (CPA) performance. It achieves this by analyzing historical performance data over a 33-day period, excluding the most recent day to account for conversion lag. The script calculates various performance metrics such as CPA, Return on Ad Spend (ROAS), conversion rate, and average cost per click (CPC) for each AdGroup. It then applies an Interquartile Range (IQR) method to identify outliers in CPA performance, marking those that significantly deviate from the campaign average. This helps in pinpointing AdGroups that may require attention or adjustment due to their inefficient spending relative to conversions.
Walking Through the Code
- Configuration and Setup
- The script begins by defining constants for column names and initializes an output DataFrame with a column for tagging outliers.
- Configurable parameters include
ANOMALY_IQR_THRESHOLD
,LOOKBACK_DAYS
, andCONVERSION_LAG_DAYS
, which control the sensitivity of anomaly detection and the data lookback period.
- Data Preparation
- The script filters the input data to include only the relevant 30-day period, excluding the most recent day due to conversion lag.
- It reduces the dataset to necessary columns and aggregates performance metrics like cost, conversions, revenue, and clicks at the AdGroup level.
- Feature Calculation
- Additional performance metrics such as CPA, ROAS, conversion rate, and average CPC are calculated for each AdGroup.
- Anomaly Detection Functions
- The script defines functions to detect anomalies using the IQR method, identifying AdGroups with CPA values outside the normal range.
- It checks for outliers both above and below the expected range, but primarily focuses on those with higher CPA.
- Anomaly Identification
- For each campaign, the script calculates the median CPA and identifies AdGroups with CPA significantly higher than this median.
- It tags these AdGroups as outliers if their spending is above the campaign median, indicating inefficient performance.
- Output Preparation
- The script compiles the identified anomalies into an output DataFrame, ready for further analysis or reporting.
- If no anomalies are found, it outputs an empty DataFrame with the relevant columns.
Vitals
- Script ID : 1507
- Client ID / Customer ID: 1306928469 / 60270543
- Action Type: Bulk Upload (Preview)
- Item Changed: AdGroup
- Output Columns: Account, Campaign, Group, AUTOMATION - Outlier
- Linked Datasource: M1 Report
- Reference Datasource: None
- Owner: emerryfield@marinsoftware.com (emerryfield@marinsoftware.com)
- Created by emerryfield@marinsoftware.com on 2024-11-09 00:11
- Last Updated by emerryfield@marinsoftware.com on 2024-11-09 00:11
> See it in Action
Python Code
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
#
# Tag AdGroup if CPA performance is abnormally high within Campaign
#
#
# Author: Dana Waidhas
# Date: 2024-05-22
RPT_COL_GROUP = 'Group'
RPT_COL_DATE = 'Date'
RPT_COL_ACCOUNT = 'Account'
RPT_COL_CAMPAIGN = 'Campaign'
RPT_COL_CAMPAIGN_ID = 'Campaign ID'
RPT_COL_GROUP_ID = 'Group ID'
RPT_COL_PUB_COST = 'Pub. Cost $'
RPT_COL_COST_PER_CONV = 'Cost/Conv. $'
RPT_COL_ROAS = 'ROAS'
RPT_COL_CONV_RATE = 'Conv. Rate %'
RPT_COL_AVG_CPC = 'Avg. CPC $'
RPT_COL_CLICKS = 'Clicks'
RPT_COL_CONV = 'Conv.'
RPT_COL_REVENUE = 'Revenue $'
RPT_COL_IMPR = 'Impr.'
BULK_COL_ACCOUNT = 'Account'
BULK_COL_CAMPAIGN = 'Campaign'
BULK_COL_AUTOMATION_OUTLIER = 'AUTOMATION - Outlier'
outputDf[BULK_COL_AUTOMATION_OUTLIER] = numpy.nan
################## Configurable Param ##################
# IQR 1.5 = looks for rare events having less than 3% of occuring; lower includes more events
ANOMALY_IQR_THRESHOLD = 0.9
LOOKBACK_DAYS = 30
CONVERSION_LAG_DAYS = 1
########################################################
## Data Prep
print(inputDf[RPT_COL_DATE].min(), inputDf[RPT_COL_DATE].max())
# 30-day lookback without most recent CONVERSION_LAG_DAYS days due to conversion lag
start_date = pd.to_datetime(datetime.date.today() - datetime.timedelta(days=CONVERSION_LAG_DAYS+LOOKBACK_DAYS))
end_date = pd.to_datetime(datetime.date.today() - datetime.timedelta(days=CONVERSION_LAG_DAYS))
df_reduced = inputDf[ (inputDf[RPT_COL_DATE] >= start_date) & (inputDf[RPT_COL_DATE] <= end_date) ]
if (df_reduced.shape[0] > 0):
print("reduced dates\\n", min(df_reduced[RPT_COL_DATE]), max(df_reduced[RPT_COL_DATE]))
else:
print("no more input to process")
# reduce to needed columns
df_reduced = df_reduced[[RPT_COL_ACCOUNT, RPT_COL_CAMPAIGN, RPT_COL_GROUP, RPT_COL_DATE, RPT_COL_PUB_COST, RPT_COL_CONV, RPT_COL_REVENUE, RPT_COL_CLICKS]].copy()
# specify the columns to sum
cols_to_sum = [RPT_COL_PUB_COST, RPT_COL_CONV, RPT_COL_REVENUE, RPT_COL_CLICKS]
# apply sum operation only to the specified columns
df_group_perf = df_reduced.groupby([RPT_COL_ACCOUNT, RPT_COL_CAMPAIGN, RPT_COL_GROUP])[cols_to_sum].sum()
# remove rows without cost or conversions
df_group_perf = df_group_perf[(df_group_perf[RPT_COL_CONV] > 0) & (df_group_perf[RPT_COL_PUB_COST] > 0)]
# index by campaign
df_group_perf = df_group_perf.reset_index().set_index([RPT_COL_ACCOUNT, RPT_COL_CAMPAIGN]).sort_index()
# calculate features
df_group_perf[RPT_COL_COST_PER_CONV] = (df_group_perf[RPT_COL_PUB_COST] / df_group_perf[RPT_COL_CONV])
df_group_perf[RPT_COL_ROAS] = df_group_perf[RPT_COL_REVENUE] / df_group_perf[RPT_COL_PUB_COST]
df_group_perf[RPT_COL_CONV_RATE] = df_group_perf[RPT_COL_CONV] / df_group_perf[RPT_COL_CLICKS]
df_group_perf[RPT_COL_AVG_CPC] = (df_group_perf[RPT_COL_PUB_COST] / df_group_perf[RPT_COL_CLICKS])
## Define Anomaly Fuctions
# Finds anomalies using a certain function (e.g. sigma rule, iqr etc.)
# data: DataFrame
# Dataset with features
# func: func
# Function to use to find anomalies
# features: list
# Feature list
# thresh: int
# Threshold value (e.g. 2/3 * sigma, 2/3 * iqr)
# Returns: tuple
def get_feature_anomalies(data, func, features=None, thresh=1.5):
if features:
features_to_check = features
else:
features_to_check = data.columns
outliers_over = pd.Series(data=[False] * data.shape[0], index=data[features_to_check].index, name='is_outlier')
outliers_under = pd.Series(data=[False] * data.shape[0], index=data[features_to_check].index, name='is_outlier')
anomalies_summary = {}
for feature in features_to_check:
anomalies_mask_over, anomalies_mask_under, upper_bound, lower_bound = func(data, feature, thresh=thresh)
anomalies_mask_combined = pd.concat([anomalies_mask_over, anomalies_mask_under], axis=1).any(axis=1)
anomalies_summary[feature] = [upper_bound, lower_bound, sum(anomalies_mask_combined), 100*sum(anomalies_mask_combined)/len(anomalies_mask_combined)]
outliers_over[anomalies_mask_over[anomalies_mask_over].index] = True
outliers_under[anomalies_mask_under[anomalies_mask_under].index] = True
# print("anomalies_mask_combined: ", anomalies_mask_combined)
# print("Outliers: ", outliers)
anomalies_summary = pd.DataFrame(anomalies_summary).T
anomalies_summary.columns=['upper_bound', 'lower_bound', 'anomalies_count', 'anomalies_percentage']
anomalies_ration = round(anomalies_summary['anomalies_percentage'].sum(), 2)
# print(f'Total Outliers Ration: {anomalies_ration} %')
return anomalies_summary, outliers_over, outliers_under
# Finds outliers/anomalies using iqr
# data: DataFrame
# col: str
# thresh: int
# Number of IQR to apply
# Returns: Series
# Boolean Series Mask of outliers
def is_anomaly_iqr(data, col, thresh):
IQR = data[col].quantile(0.75) - data[col].quantile(0.25)
upper_bound = data[col].quantile(0.75) + (thresh * IQR)
lower_bound = data[col].quantile(0.25) - (thresh * IQR)
# print("IQR calc: ", col, IQR, upper_bound, lower_bound)
# anomalies_mask = pd.concat([data[col] > upper_bound, data[col] < lower_bound], axis=1).any(axis=1)
anomalies_mask_over = data[col] > upper_bound
anomalies_mask_under = data[col] < lower_bound
# print("Anomalies mask: ", (anomalies_mask_over, anomalies_mask_under))
return anomalies_mask_over, anomalies_mask_under, upper_bound, lower_bound
def find_peer_anomaly(df_slice, features, iqr_threshold=1.5, outliers_desired=(True, True)):
(want_outliers_over, want_outliers_under) = outliers_desired
if (df_slice.shape[0] < 3):
return
idx = df_slice.index.unique()
df_slice.reset_index(inplace=True)
anomalies_summary_iqr, outlier_over_iqr, outlier_under_iqr = get_feature_anomalies( \
df_slice, \
func=is_anomaly_iqr, \
features=features, \
thresh=iqr_threshold)
median_cost = df_slice[RPT_COL_PUB_COST].median()
# print(f"over: {outlier_over_iqr}")
# print("under: {outlier_under_iqr}")
# include over/under outliers as desired
is_outlier_iqr = np.logical_or(
np.logical_and(want_outliers_over, outlier_over_iqr),
np.logical_and(want_outliers_under, outlier_under_iqr)
)
# print("is_outlier\\n", is_outlier_iqr)
# ignore anomaly from low spend adgroups (greater than campaign median)
is_outlier_iqr = np.logical_and(is_outlier_iqr, df_slice[RPT_COL_PUB_COST] > median_cost)
if sum(is_outlier_iqr) > 0:
print(">>> ANOMALY", idx)
print(anomalies_summary_iqr)
cols = [RPT_COL_GROUP, RPT_COL_PUB_COST, RPT_COL_CONV, RPT_COL_REVENUE] + features
print(df_slice.loc[is_outlier_iqr, cols])
return is_outlier_iqr
## Find CPA Anomalies
print("df_group_perf shape:", df_group_perf.shape)
print("df_group_perf", tableize(df_group_perf.head()))
df_anomalies = pd.DataFrame()
# annotate via Marin Dimensions
def rowFunc(row):
return 'CPA ${:,.2f} is much higher than campaign avg ${:,.2f}'.format(
row[RPT_COL_COST_PER_CONV], \
row[RPT_COL_COST_PER_CONV + '_median']
)
for campaign_idx in df_group_perf.index.unique():
df_campaign = df_group_perf.loc[[campaign_idx]].copy()
df_campaign[RPT_COL_COST_PER_CONV + '_median'] = df_campaign[RPT_COL_COST_PER_CONV].mean()
df_campaign[BULK_COL_AUTOMATION_OUTLIER] = np.nan
outliers = find_peer_anomaly(df_campaign, [RPT_COL_COST_PER_CONV], iqr_threshold=ANOMALY_IQR_THRESHOLD, outliers_desired=(True,False))
if outliers is not None and sum(outliers) > 0:
df_outliers = df_campaign.loc[outliers].copy()
df_outliers[BULK_COL_AUTOMATION_OUTLIER] = df_outliers.apply(rowFunc, axis=1)
print(df_outliers)
df_anomalies = pd.concat([df_anomalies, df_outliers], axis=0)
## Prepare Output
if df_anomalies.empty:
outputDf = pd.DataFrame(columns=[RPT_COL_ACCOUNT, RPT_COL_CAMPAIGN, RPT_COL_GROUP, BULK_COL_AUTOMATION_OUTLIER])
print("No anomalies found")
else:
print("anomaly examples", tableize(df_anomalies.head()))
outputDf = df_anomalies[[RPT_COL_ACCOUNT, RPT_COL_CAMPAIGN, RPT_COL_GROUP, BULK_COL_AUTOMATION_OUTLIER]]
print("output size", outputDf.shape)
print("output examples", tableize(outputDf.head()))
Post generated on 2025-03-11 01:25:51 GMT