Script 1507: AdGroup CPA Outliers
Purpose
The Python script identifies and tags AdGroups with abnormally high Cost Per Acquisition (CPA) performance within a campaign over a specified lookback period, excluding recent days due to conversion lag.
To Elaborate
The script is designed to detect and tag AdGroups within advertising campaigns that exhibit unusually high Cost Per Acquisition (CPA) performance. It does this by analyzing historical performance data over a 30-day lookback period, excluding the most recent day to account for conversion lag. The script uses statistical methods, specifically the Interquartile Range (IQR), to identify outliers in CPA performance. By comparing each AdGroup’s CPA against the campaign’s average, the script flags those that significantly deviate from the norm. This process helps advertisers identify potential issues or inefficiencies in their campaigns, allowing them to take corrective actions to optimize their advertising spend.
Walking Through the Code
- Data Preparation
- The script begins by filtering the input data to include only the relevant 30-day lookback period, excluding the most recent day due to conversion lag.
- It reduces the dataset to essential columns such as account, campaign, group, date, publication cost, conversions, revenue, and clicks.
- The data is then grouped by account, campaign, and group, summing up the publication cost, conversions, revenue, and clicks for each group.
- Feature Calculation
- The script calculates key performance metrics for each AdGroup, including Cost Per Conversion (CPA), Return on Ad Spend (ROAS), Conversion Rate, and Average Cost Per Click (CPC).
- Anomaly Detection
- The script defines functions to detect anomalies using the IQR method. It identifies outliers by calculating the upper and lower bounds for each feature and flags data points that fall outside these bounds.
- It applies these functions to the CPA feature to find AdGroups with abnormally high CPA values compared to the campaign average.
- Output Preparation
- If anomalies are detected, the script tags these AdGroups with a descriptive message indicating their CPA is much higher than the campaign average.
- The results are compiled into an output DataFrame, which includes the account, campaign, group, and the anomaly tag for each identified outlier. If no anomalies are found, an empty DataFrame is prepared.
Vitals
- Script ID : 1507
- Client ID / Customer ID: 1306928469 / 60270543
- Action Type: Bulk Upload (Preview)
- Item Changed: AdGroup
- Output Columns: Account, Campaign, Group, AUTOMATION - Outlier
- Linked Datasource: M1 Report
- Reference Datasource: None
- Owner: emerryfield@marinsoftware.com (emerryfield@marinsoftware.com)
- Created by emerryfield@marinsoftware.com on 2024-11-09 00:11
- Last Updated by emerryfield@marinsoftware.com on 2024-11-09 00:11
> See it in Action
Python Code
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
#
# Tag AdGroup if CPA performance is abnormally high within Campaign
#
#
# Author: Dana Waidhas
# Date: 2024-05-22
RPT_COL_GROUP = 'Group'
RPT_COL_DATE = 'Date'
RPT_COL_ACCOUNT = 'Account'
RPT_COL_CAMPAIGN = 'Campaign'
RPT_COL_CAMPAIGN_ID = 'Campaign ID'
RPT_COL_GROUP_ID = 'Group ID'
RPT_COL_PUB_COST = 'Pub. Cost $'
RPT_COL_COST_PER_CONV = 'Cost/Conv. $'
RPT_COL_ROAS = 'ROAS'
RPT_COL_CONV_RATE = 'Conv. Rate %'
RPT_COL_AVG_CPC = 'Avg. CPC $'
RPT_COL_CLICKS = 'Clicks'
RPT_COL_CONV = 'Conv.'
RPT_COL_REVENUE = 'Revenue $'
RPT_COL_IMPR = 'Impr.'
BULK_COL_ACCOUNT = 'Account'
BULK_COL_CAMPAIGN = 'Campaign'
BULK_COL_AUTOMATION_OUTLIER = 'AUTOMATION - Outlier'
outputDf[BULK_COL_AUTOMATION_OUTLIER] = numpy.nan
################## Configurable Param ##################
# IQR 1.5 = looks for rare events having less than 3% of occuring; lower includes more events
ANOMALY_IQR_THRESHOLD = 0.9
LOOKBACK_DAYS = 30
CONVERSION_LAG_DAYS = 1
########################################################
## Data Prep
print(inputDf[RPT_COL_DATE].min(), inputDf[RPT_COL_DATE].max())
# 30-day lookback without most recent CONVERSION_LAG_DAYS days due to conversion lag
start_date = pd.to_datetime(datetime.date.today() - datetime.timedelta(days=CONVERSION_LAG_DAYS+LOOKBACK_DAYS))
end_date = pd.to_datetime(datetime.date.today() - datetime.timedelta(days=CONVERSION_LAG_DAYS))
df_reduced = inputDf[ (inputDf[RPT_COL_DATE] >= start_date) & (inputDf[RPT_COL_DATE] <= end_date) ]
if (df_reduced.shape[0] > 0):
print("reduced dates\\n", min(df_reduced[RPT_COL_DATE]), max(df_reduced[RPT_COL_DATE]))
else:
print("no more input to process")
# reduce to needed columns
df_reduced = df_reduced[[RPT_COL_ACCOUNT, RPT_COL_CAMPAIGN, RPT_COL_GROUP, RPT_COL_DATE, RPT_COL_PUB_COST, RPT_COL_CONV, RPT_COL_REVENUE, RPT_COL_CLICKS]].copy()
# specify the columns to sum
cols_to_sum = [RPT_COL_PUB_COST, RPT_COL_CONV, RPT_COL_REVENUE, RPT_COL_CLICKS]
# apply sum operation only to the specified columns
df_group_perf = df_reduced.groupby([RPT_COL_ACCOUNT, RPT_COL_CAMPAIGN, RPT_COL_GROUP])[cols_to_sum].sum()
# remove rows without cost or conversions
df_group_perf = df_group_perf[(df_group_perf[RPT_COL_CONV] > 0) & (df_group_perf[RPT_COL_PUB_COST] > 0)]
# index by campaign
df_group_perf = df_group_perf.reset_index().set_index([RPT_COL_ACCOUNT, RPT_COL_CAMPAIGN]).sort_index()
# calculate features
df_group_perf[RPT_COL_COST_PER_CONV] = (df_group_perf[RPT_COL_PUB_COST] / df_group_perf[RPT_COL_CONV])
df_group_perf[RPT_COL_ROAS] = df_group_perf[RPT_COL_REVENUE] / df_group_perf[RPT_COL_PUB_COST]
df_group_perf[RPT_COL_CONV_RATE] = df_group_perf[RPT_COL_CONV] / df_group_perf[RPT_COL_CLICKS]
df_group_perf[RPT_COL_AVG_CPC] = (df_group_perf[RPT_COL_PUB_COST] / df_group_perf[RPT_COL_CLICKS])
## Define Anomaly Fuctions
# Finds anomalies using a certain function (e.g. sigma rule, iqr etc.)
# data: DataFrame
# Dataset with features
# func: func
# Function to use to find anomalies
# features: list
# Feature list
# thresh: int
# Threshold value (e.g. 2/3 * sigma, 2/3 * iqr)
# Returns: tuple
def get_feature_anomalies(data, func, features=None, thresh=1.5):
if features:
features_to_check = features
else:
features_to_check = data.columns
outliers_over = pd.Series(data=[False] * data.shape[0], index=data[features_to_check].index, name='is_outlier')
outliers_under = pd.Series(data=[False] * data.shape[0], index=data[features_to_check].index, name='is_outlier')
anomalies_summary = {}
for feature in features_to_check:
anomalies_mask_over, anomalies_mask_under, upper_bound, lower_bound = func(data, feature, thresh=thresh)
anomalies_mask_combined = pd.concat([anomalies_mask_over, anomalies_mask_under], axis=1).any(axis=1)
anomalies_summary[feature] = [upper_bound, lower_bound, sum(anomalies_mask_combined), 100*sum(anomalies_mask_combined)/len(anomalies_mask_combined)]
outliers_over[anomalies_mask_over[anomalies_mask_over].index] = True
outliers_under[anomalies_mask_under[anomalies_mask_under].index] = True
# print("anomalies_mask_combined: ", anomalies_mask_combined)
# print("Outliers: ", outliers)
anomalies_summary = pd.DataFrame(anomalies_summary).T
anomalies_summary.columns=['upper_bound', 'lower_bound', 'anomalies_count', 'anomalies_percentage']
anomalies_ration = round(anomalies_summary['anomalies_percentage'].sum(), 2)
# print(f'Total Outliers Ration: {anomalies_ration} %')
return anomalies_summary, outliers_over, outliers_under
# Finds outliers/anomalies using iqr
# data: DataFrame
# col: str
# thresh: int
# Number of IQR to apply
# Returns: Series
# Boolean Series Mask of outliers
def is_anomaly_iqr(data, col, thresh):
IQR = data[col].quantile(0.75) - data[col].quantile(0.25)
upper_bound = data[col].quantile(0.75) + (thresh * IQR)
lower_bound = data[col].quantile(0.25) - (thresh * IQR)
# print("IQR calc: ", col, IQR, upper_bound, lower_bound)
# anomalies_mask = pd.concat([data[col] > upper_bound, data[col] < lower_bound], axis=1).any(axis=1)
anomalies_mask_over = data[col] > upper_bound
anomalies_mask_under = data[col] < lower_bound
# print("Anomalies mask: ", (anomalies_mask_over, anomalies_mask_under))
return anomalies_mask_over, anomalies_mask_under, upper_bound, lower_bound
def find_peer_anomaly(df_slice, features, iqr_threshold=1.5, outliers_desired=(True, True)):
(want_outliers_over, want_outliers_under) = outliers_desired
if (df_slice.shape[0] < 3):
return
idx = df_slice.index.unique()
df_slice.reset_index(inplace=True)
anomalies_summary_iqr, outlier_over_iqr, outlier_under_iqr = get_feature_anomalies( \
df_slice, \
func=is_anomaly_iqr, \
features=features, \
thresh=iqr_threshold)
median_cost = df_slice[RPT_COL_PUB_COST].median()
# print(f"over: {outlier_over_iqr}")
# print("under: {outlier_under_iqr}")
# include over/under outliers as desired
is_outlier_iqr = np.logical_or(
np.logical_and(want_outliers_over, outlier_over_iqr),
np.logical_and(want_outliers_under, outlier_under_iqr)
)
# print("is_outlier\\n", is_outlier_iqr)
# ignore anomaly from low spend adgroups (greater than campaign median)
is_outlier_iqr = np.logical_and(is_outlier_iqr, df_slice[RPT_COL_PUB_COST] > median_cost)
if sum(is_outlier_iqr) > 0:
print(">>> ANOMALY", idx)
print(anomalies_summary_iqr)
cols = [RPT_COL_GROUP, RPT_COL_PUB_COST, RPT_COL_CONV, RPT_COL_REVENUE] + features
print(df_slice.loc[is_outlier_iqr, cols])
return is_outlier_iqr
## Find CPA Anomalies
print("df_group_perf shape:", df_group_perf.shape)
print("df_group_perf", tableize(df_group_perf.head()))
df_anomalies = pd.DataFrame()
# annotate via Marin Dimensions
def rowFunc(row):
return 'CPA ${:,.2f} is much higher than campaign avg ${:,.2f}'.format(
row[RPT_COL_COST_PER_CONV], \
row[RPT_COL_COST_PER_CONV + '_median']
)
for campaign_idx in df_group_perf.index.unique():
df_campaign = df_group_perf.loc[[campaign_idx]].copy()
df_campaign[RPT_COL_COST_PER_CONV + '_median'] = df_campaign[RPT_COL_COST_PER_CONV].mean()
df_campaign[BULK_COL_AUTOMATION_OUTLIER] = np.nan
outliers = find_peer_anomaly(df_campaign, [RPT_COL_COST_PER_CONV], iqr_threshold=ANOMALY_IQR_THRESHOLD, outliers_desired=(True,False))
if outliers is not None and sum(outliers) > 0:
df_outliers = df_campaign.loc[outliers].copy()
df_outliers[BULK_COL_AUTOMATION_OUTLIER] = df_outliers.apply(rowFunc, axis=1)
print(df_outliers)
df_anomalies = pd.concat([df_anomalies, df_outliers], axis=0)
## Prepare Output
if df_anomalies.empty:
outputDf = pd.DataFrame(columns=[RPT_COL_ACCOUNT, RPT_COL_CAMPAIGN, RPT_COL_GROUP, BULK_COL_AUTOMATION_OUTLIER])
print("No anomalies found")
else:
print("anomaly examples", tableize(df_anomalies.head()))
outputDf = df_anomalies[[RPT_COL_ACCOUNT, RPT_COL_CAMPAIGN, RPT_COL_GROUP, BULK_COL_AUTOMATION_OUTLIER]]
print("output size", outputDf.shape)
print("output examples", tableize(outputDf.head()))
Post generated on 2024-11-27 06:58:46 GMT