Script 1487: Pacing Campaign Bulk Sheet
Purpose
The Python script processes campaign data to adjust daily budgets based on pacing and traffic conditions.
To Elaborate
The script is designed to manage and adjust the daily budgets of advertising campaigns based on specific pacing and traffic conditions. It filters out campaigns that have ended and focuses on those with active traffic. The script then applies a daily budget adjustment factor for campaigns that are underpacing and have less than five days remaining in their pacing cycle. Additionally, it ensures that campaigns with a CPM (Cost Per Mille) goal meet a minimum daily budget requirement. The script also flags campaigns with recommended daily budgets exceeding a certain threshold for further review. This process helps in optimizing the allocation of advertising budgets to ensure effective campaign performance.
Walking Through the Code
- Data Filtering:
- The script begins by filtering out campaigns that have ended, focusing only on those with active traffic.
- It uses the
SBA Traffic
column to ensure only campaigns with ‘Traffic’ are considered for further processing.
- Daily Budget Adjustment:
- The script checks if the recommended daily budget is below a certain threshold and adjusts it accordingly.
- It introduces a new column for the Daily Budget Adjustment Factor, setting it to 0.05 for underpacing campaigns with five or fewer days remaining.
- Budget Conversion and Adjustment:
- The daily budget column is converted to a numeric format to facilitate calculations.
- The script applies the adjustment factor to the daily budget for applicable campaigns.
- Minimum Budget Enforcement:
- A function ensures that campaigns with a CPM goal have a minimum daily budget of $0.75.
- Budget Alert Configuration:
- The script flags campaigns with recommended daily budgets exceeding $200 for review, marking them as ‘Flagged’.
- Output Preparation:
- Finally, the script renames columns for clarity and prepares the filtered data for output, displaying the final adjusted campaign data.
Vitals
- Script ID : 1487
- Client ID / Customer ID: 1306927171 / 60270139
- Action Type: Bulk Upload
- Item Changed: Campaign
- Output Columns: Account, Campaign, Daily Budget, Daily Budget Adjustment Factor, Daily Budget Alert
- Linked Datasource: M1 Report
- Reference Datasource: None
- Owner: Jesus Garza (jgarza@marinsoftware.com)
- Created by Jesus Garza on 2024-11-06 18:17
- Last Updated by ascott@marinsoftware.com on 2024-11-22 19:05
> See it in Action
Python Code
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
## name: Pacing - Campaign Bulk Sheet
## description:
##
##
## author: Jesus Garza
## created: 2024-07-03
## 7/1 Updated version with Daily Budget Adjustment Factor
today = datetime.datetime.now().date() # Removed CLIENT_TIMEZONE for simplicity
# Primary data source and columns
inputDf = dataSourceDict["1"]
RPT_COL_CAMPAIGN = 'Campaign'
RPT_COL_ACCOUNT = 'Account'
RPT_COL_AUTO_PACING_CYCLE_START_DATE = 'Auto. Pacing Cycle Start Date'
RPT_COL_AUTO_PACING_CYCLE_END_DATE = 'Auto. Pacing Cycle End Date'
RPT_COL_AUTO_PACING_CYCLE_DAYS_ELAPSED = 'Auto. Pacing Cycle Days Elapsed'
RPT_COL_AUTO_PACING_CYCLE_DAYS_REMAINING = 'Auto. Pacing Cycle Days Remaining'
RPT_COL_AUTO_PACING_CYCLE_PACING = 'Auto. Pacing Cycle Pacing'
RPT_COL_AUTO_PACING_CYCLE_THRESHOLD = 'Auto. Pacing Cycle Threshold'
RPT_COL_TOTAL_TARGET_SPEND_PER_IMPRVIEWS = 'Total Target (Spend/Impr./Views)'
RPT_COL_TOTAL_DAYS = 'Total Days'
RPT_COL_TOTAL_DAYS_ELAPSED = 'Total Days Elapsed'
RPT_COL_TOTAL_PACING = 'Total Pacing'
RPT_COL_DELIVERY_STATUS = 'Delivery Status'
RPT_COL_RECOMMENDED_DAILY_BUDGET = 'Recommended Daily Budget'
RPT_COL_DAILY_BUDGET = 'Daily Budget'
RPT_COL_PACING_CALCULATION_DATE = 'Pacing Calculation Date'
RPT_COL_SOCIAL_BUDGET = 'Social Budget'
RPT_COL_SOCIAL_BUDGET_UPDATE_STATUS = 'Social Budget Update Status'
RPT_COL_AUTO_PACING_CYCLE_PUB_COST = 'Auto. Pacing Cycle Pub. Cost'
RPT_COL_AUTO_PACING_CYCLE_IMPR = 'Auto. Pacing Cycle Impr.'
RPT_COL_AUTO_PACING_CYCLE_CLICKS = 'Auto. Pacing Cycle Clicks'
RPT_COL_AUTO_PACING_CYCLE_VIEWS = 'Auto. Pacing Cycle Views'
RPT_COL_SBA_TRAFFIC = 'SBA Traffic'
RPT_COL_DAILY_BUDGET_ALERT = 'Daily Budget Alert'
RPT_COL_GOAL = 'Goal'
# Output columns
BULK_COL_ACCOUNT = 'Account'
BULK_COL_CAMPAIGN = 'Campaign'
BULK_COL_DAILY_BUDGET = 'Daily Budget'
BULK_COL_DAILY_BUDGET_ADJUSTMENT_FACTOR = 'Daily Budget Adjustment Factor'
BULK_COL_DAILY_BUDGET_ALERT = 'Daily Budget Alert'
# First filter: Exclude campaigns with 'Campaign Ended'
campaigns_not_ended = inputDf[inputDf[RPT_COL_AUTO_PACING_CYCLE_THRESHOLD] != 'Campaign Ended'].copy()
# Second filter: From the remaining, only include those where SBA Traffic is 'Traffic'
filteredDf = campaigns_not_ended[campaigns_not_ended[RPT_COL_SBA_TRAFFIC] == 'Traffic'].copy()
# Apply necessary operations on filteredDf
filteredDf[RPT_COL_DAILY_BUDGET] = np.where(filteredDf[RPT_COL_RECOMMENDED_DAILY_BUDGET] >= 200, "", filteredDf[RPT_COL_RECOMMENDED_DAILY_BUDGET])
# Add the new logic for Daily Budget Adjustment Factor
if BULK_COL_DAILY_BUDGET_ADJUSTMENT_FACTOR not in filteredDf.columns:
filteredDf[BULK_COL_DAILY_BUDGET_ADJUSTMENT_FACTOR] = np.nan
filteredDf.loc[(filteredDf[RPT_COL_AUTO_PACING_CYCLE_DAYS_REMAINING] <= 5) &
(filteredDf[RPT_COL_AUTO_PACING_CYCLE_THRESHOLD] == 'Underpacing'),
BULK_COL_DAILY_BUDGET_ADJUSTMENT_FACTOR] = 0.05
# Convert the 'RPT_COL_DAILY_BUDGET' column to numeric
filteredDf[RPT_COL_DAILY_BUDGET] = pd.to_numeric(filteredDf[RPT_COL_DAILY_BUDGET], errors='coerce')
# Apply the Daily Budget Adjustment Factor to the Daily Budget column
filteredDf.loc[filteredDf[BULK_COL_DAILY_BUDGET_ADJUSTMENT_FACTOR].notnull(),
RPT_COL_DAILY_BUDGET] = filteredDf.loc[filteredDf[BULK_COL_DAILY_BUDGET_ADJUSTMENT_FACTOR].notnull(),
RPT_COL_DAILY_BUDGET] * (1 + filteredDf[BULK_COL_DAILY_BUDGET_ADJUSTMENT_FACTOR])
# Function to ensure minimum daily budget for CPM goal
def apply_minimum_budget_for_cpm(df, goal_col, budget_col, minimum_budget=0.75):
df.loc[df[goal_col].str.lower() == 'cpm', budget_col] = df[budget_col].apply(lambda x: max(x, minimum_budget) if pd.notnull(x) else minimum_budget)
# Apply the minimum budget function
apply_minimum_budget_for_cpm(filteredDf, RPT_COL_GOAL, RPT_COL_DAILY_BUDGET)
# Configured 'Daily Budget Alert' and set to 'Flagged' for daily budgets exceeding $200
filteredDf[BULK_COL_DAILY_BUDGET_ALERT] = filteredDf.apply(
lambda row: 'Checked' if row[RPT_COL_RECOMMENDED_DAILY_BUDGET] >= 200 and row[RPT_COL_DAILY_BUDGET_ALERT] == 'Checked' else
'Flagged' if row[RPT_COL_RECOMMENDED_DAILY_BUDGET] >= 200 else '', axis=1)
# Assign the final filtered DataFrame to outputDf with correct column names
outputDf = filteredDf.rename(columns={
RPT_COL_ACCOUNT: BULK_COL_ACCOUNT,
RPT_COL_CAMPAIGN: BULK_COL_CAMPAIGN,
RPT_COL_DAILY_BUDGET: BULK_COL_DAILY_BUDGET,
BULK_COL_DAILY_BUDGET_ADJUSTMENT_FACTOR: BULK_COL_DAILY_BUDGET_ADJUSTMENT_FACTOR,
BULK_COL_DAILY_BUDGET_ALERT: BULK_COL_DAILY_BUDGET_ALERT
})
# Display the final output
print(outputDf)
Post generated on 2024-11-27 06:58:46 GMT