Script 1265: Pacing Daily Budget Alert Checked Status

Purpose:

The Python script filters and processes campaign data to update daily budget alerts for campaigns marked as “Checked.”

To Elaborate

The Python script is designed to manage and update daily budget alerts for advertising campaigns. It begins by filtering out campaigns that have ended and focuses on those with active traffic. The script then updates the daily budget for these campaigns based on a recommended budget. It further refines the selection by only including campaigns where the daily budget alert status is marked as “Checked.” The final output consists of essential campaign details, including account, campaign name, daily budget, and the alert status, which is set to “Checked.” This process ensures that only relevant campaigns with active traffic and checked alerts are considered for budget updates, facilitating efficient budget management and alert tracking.

Walking Through the Code

  1. Data Filtering:
    • The script starts by filtering out campaigns that have ended, using the ‘Auto. Pacing Cycle Threshold’ column.
    • It further narrows down the selection to campaigns with active traffic, indicated by ‘SBA Traffic’ being ‘Traffic’.
  2. Budget Update:
    • For the filtered campaigns, the daily budget is updated to match the recommended daily budget.
    • This ensures that the budget aligns with the suggested spending plan.
  3. Alert Status Check:
    • The script then filters campaigns where the ‘Daily Budget Alert’ status is ‘Checked’.
    • This step ensures that only campaigns with confirmed alerts are processed.
  4. Output Preparation:
    • New columns are created for the output, including account, campaign, daily budget, and alert status.
    • The alert status is set to ‘Checked’ for the final output.
    • The script selects these columns for the final output, ready for display or further utilization.

Vitals

  • Script ID : 1265
  • Client ID / Customer ID: 1306927181 / 60270139
  • Action Type: Bulk Upload
  • Item Changed: Campaign
  • Output Columns: Account, Campaign, Daily Budget, Daily Budget Alert
  • Linked Datasource: M1 Report
  • Reference Datasource: None
  • Owner: Jesus Garza (jgarza@marinsoftware.com)
  • Created by Jesus Garza on 2024-07-09 00:34
  • Last Updated by ascott@marinsoftware.com on 2024-09-04 14:37
> See it in Action

Python Code

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
# 
## name: Daily Budget Alert "Checked" Status 
## description:
##  
## 
## author: Jesus A. Garza
## created: 2024-07-01
## 

today = datetime.datetime.now(CLIENT_TIMEZONE).date()

# primary data source and columns
inputDf = dataSourceDict["1"]
RPT_COL_CAMPAIGN = 'Campaign'
RPT_COL_DATE = 'Date'
RPT_COL_ACCOUNT = 'Account'
RPT_COL_AUTO_PACING_CYCLE_START_DATE = 'Auto. Pacing Cycle Start Date'
RPT_COL_AUTO_PACING_CYCLE_END_DATE = 'Auto. Pacing Cycle End Date'
RPT_COL_AUTO_PACING_CYCLE_DAYS_ELAPSED = 'Auto. Pacing Cycle Days Elapsed'
RPT_COL_AUTO_PACING_CYCLE_DAYS_REMAINING = 'Auto. Pacing Cycle Days Remaining'
RPT_COL_AUTO_PACING_CYCLE_PACING = 'Auto. Pacing Cycle Pacing'
RPT_COL_AUTO_PACING_CYCLE_THRESHOLD = 'Auto. Pacing Cycle Threshold'
RPT_COL_TOTAL_TARGET_SPEND_PER_IMPRVIEWS = 'Total Target (Spend/Impr./Views)'
RPT_COL_TOTAL_DAYS = 'Total Days'
RPT_COL_TOTAL_DAYS_ELAPSED = 'Total Days Elapsed'
RPT_COL_TOTAL_PACING = 'Total Pacing'
RPT_COL_DELIVERY_STATUS = 'Delivery Status'
RPT_COL_RECOMMENDED_DAILY_BUDGET = 'Recommended Daily Budget'
RPT_COL_DAILY_BUDGET = 'Daily Budget'
RPT_COL_PACING_CALCULATION_DATE = 'Pacing Calculation Date'
RPT_COL_SOCIAL_BUDGET = 'Social Budget'
RPT_COL_SOCIAL_BUDGET_UPDATE_STATUS = 'Social Budget Update Status'
RPT_COL_AUTO_PACING_CYCLE_PUB_COST = 'Auto. Pacing Cycle Pub. Cost'
RPT_COL_AUTO_PACING_CYCLE_IMPR = 'Auto. Pacing Cycle Impr.'
RPT_COL_AUTO_PACING_CYCLE_CLICKS = 'Auto. Pacing Cycle Clicks'
RPT_COL_AUTO_PACING_CYCLE_VIEWS = 'Auto. Pacing Cycle Views'
RPT_COL_SBA_TRAFFIC = 'SBA Traffic'
RPT_COL_DAILY_BUDGET_ALERT = 'Daily Budget Alert'

# output columns and initial values
BULK_COL_ACCOUNT = 'Account'
BULK_COL_CAMPAIGN = 'Campaign'
BULK_COL_DAILY_BUDGET = 'Daily Budget'
BULK_DAILY_BUDGET_ALERT = 'Bulk Daily Budget Alert'

# First filter: Exclude campaigns with 'Campaign Ended'
campaigns_not_ended = inputDf[inputDf[RPT_COL_AUTO_PACING_CYCLE_THRESHOLD] != 'Campaign Ended']

# Second filter: From the remaining, only include those where SBA Traffic is 'Traffic'
filteredDf = campaigns_not_ended[campaigns_not_ended[RPT_COL_SBA_TRAFFIC] == 'Traffic']

# Apply necessary operations on filteredDf
filteredDf.loc[:, RPT_COL_DAILY_BUDGET] = filteredDf[RPT_COL_RECOMMENDED_DAILY_BUDGET]


# Filter to include only campaigns where DAILY_BUDGET_ALERT is 'Checked'
outputDf = filteredDf[filteredDf[RPT_COL_DAILY_BUDGET_ALERT] == 'Checked'].copy()

# Create new columns for output and clear the 'Checked' value in 'Bulk Daily Budget Alert'
outputDf[BULK_COL_ACCOUNT] = outputDf[RPT_COL_ACCOUNT]
outputDf[BULK_COL_CAMPAIGN] = outputDf[RPT_COL_CAMPAIGN]
outputDf[BULK_COL_DAILY_BUDGET] = outputDf[RPT_COL_DAILY_BUDGET]
outputDf[RPT_COL_DAILY_BUDGET_ALERT] = 'Checked'

# Select only the new columns for the final output
outputDf = outputDf[[BULK_COL_ACCOUNT, BULK_COL_CAMPAIGN, BULK_COL_DAILY_BUDGET, RPT_COL_DAILY_BUDGET_ALERT]]

# Assuming you want to display or utilize outputDf
print(outputDf)

Post generated on 2025-03-11 01:25:51 GMT

comments powered by Disqus