Script 1067: Script Campaign Numero de Projet
Purpose:
The Python script extracts project numbers from campaign names by identifying tags that appear after a specified delimiter and assigns them to a designated dimension.
To Elaborate
The script is designed to parse campaign names and extract project numbers, which are identified as tags following a specific delimiter, in this case, a hyphen (‘-‘). The extracted project numbers are then assigned to a dimension called ‘Numero de Projet’. This process involves iterating through a dataset of campaign names, checking for the presence of the delimiter, and using a regular expression to capture the tag that follows it. If a tag is found and differs from any existing tag, it is updated in the output dataset. The script ensures that only non-empty tags are included in the final output, and it removes any extra whitespace from campaign names to prevent issues in data preview.
Walking Through the Code
- Configurable Parameters:
- The script begins by defining a configurable parameter
PLACEMENT_KEY
, which is set to a hyphen (‘-‘). This key is used to identify the position in the campaign name where the project number tag appears. - It also specifies the primary data source and column names for input and output data frames.
- The script begins by defining a configurable parameter
- Function Definition:
- A function
get_tag_from_campaign_name
is defined to extract the tag from the campaign name using a regular expression pattern. This pattern searches for a sequence of word characters following the hyphen.
- A function
- Data Processing:
- The script copies all rows from the input data frame to the output data frame.
- It iterates through each row of the input data frame, checking if the campaign name contains the
PLACEMENT_KEY
. - If the key is present, the script extracts the tag using the defined function and compares it with the existing tag in the ‘Numero de Projet’ column.
- If the extracted tag is different and non-empty, it updates the output data frame with the new tag; otherwise, it assigns a NaN value.
- Final Adjustments:
- The script filters the output data frame to include only rows with non-empty tags.
- It removes extra whitespace from campaign names to ensure clean data presentation.
- Finally, it prints the output data frame if it is not empty, providing a preview of the processed data.
Vitals
- Script ID : 1067
- Client ID / Customer ID: 1306927809 / 60270355
- Action Type: Bulk Upload
- Item Changed: Campaign
- Output Columns: Account, Campaign, Numero de Projet
- Linked Datasource: M1 Report
- Reference Datasource: None
- Owner: Grégory Pantaine (gpantaine@marinsoftware.com)
- Created by Grégory Pantaine on 2024-05-10 16:33
- Last Updated by Grégory Pantaine on 2024-05-15 12:25
> See it in Action
Python Code
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
## name: Script - Campaign - Numero de Projet
## description:
## Parse Campaign Name and pick out project number into a dimension 'Numero de Projet'.
## Tag appears after '-' in campaign name.
##
## Copied by Grégory Pantaine
## created: 2024-05-10
########### Configurable Params - START ##########
PLACEMENT_KEY = '-'
# Primary data source and columns
inputDf = dataSourceDict["1"]
# Output columns and initial values
RPT_COL_CAMPAIGN = 'Campaign'
RPT_COL_ACCOUNT = 'Account'
RPT_COL_NUMERO_PROJET = 'Numero de Projet'
BULK_COL_ACCOUNT = 'Account'
BULK_COL_CAMPAIGN = 'Campaign'
BULK_COL_NUMERO_PROJET = 'Numero de Projet'
# Function to extract tag from campaign name
def get_tag_from_campaign_name(campaign_name):
regex_pattern = r"-(\w+)"
placement_match = re.search(regex_pattern, campaign_name)
if placement_match:
placement_value = placement_match.group(1)
# print("Placement value:", placement_value)
return placement_value.strip()
else:
print("Placement value not found: " + campaign_name)
# Return the entire campaign name if 'pl:' is not present
return campaign_name.strip()
# Copy all input rows to output
outputDf = inputDf.copy()
# Loop through all rows
for index, row in inputDf.iterrows():
existing_tag = row[RPT_COL_NUMERO_PROJET]
campaign_name = row[RPT_COL_CAMPAIGN]
# Skip processing if campaign name does not contain the placement key
if PLACEMENT_KEY not in campaign_name:
continue
tag = get_tag_from_campaign_name(campaign_name)
# Print campaign and tag information
# print("Campaign [%s] => Tag [%s]" % (campaign_name, tag))
# Only tag if it's different than the existing tag
if (len(tag) > 0) & (tag != existing_tag):
outputDf.at[index, BULK_COL_NUMERO_PROJET] = tag
else:
outputDf.at[index, BULK_COL_NUMERO_PROJET] = np.nan
# Only include non-empty tags in bulk
outputDf = outputDf.dropna(subset=[BULK_COL_NUMERO_PROJET])
# Remove extra whitespace from campaign name that breaks Preview
outputDf[RPT_COL_CAMPAIGN] = outputDf[RPT_COL_CAMPAIGN].str.strip()
if not outputDf.empty:
print("outputDf", tableize(outputDf.head()))
else:
print("Empty outputDf")
Post generated on 2025-03-11 01:25:51 GMT