Script 1055: AdGroup Performance Outlier 33d lookback
Purpose
Tag AdGroup if CPA performance is abnormally high within Campaign 30-lookback excluding recent 3 days
To Elaborate
The Python script aims to identify AdGroups within a campaign that have a high cost per conversion (CPA) compared to the campaign average. It analyzes data from the past 30 days, excluding the most recent 3 days, to calculate the CPA for each AdGroup. If an AdGroup’s CPA is significantly higher than the campaign average, it is flagged as an outlier.
Walking Through the Code
- The script starts by defining column constants and creating an output column for tagging outliers.
- The input data is prepared by selecting the relevant date range (30-day lookback excluding the most recent 3 days) and reducing the dataset to only the necessary columns.
- The data is grouped by account, campaign, and AdGroup, and the sum of relevant numeric columns is calculated.
- Rows without cost or conversions are removed from the dataset.
- The dataset is indexed by campaign for easier analysis.
- Additional features such as cost per conversion, return on ad spend (ROAS), conversion rate, and average cost per click (CPC) are calculated.
- Anomaly functions are defined to identify outliers using the interquartile range (IRQ) method.
- A function is defined to find outliers within each campaign by calling the anomaly function and specifying the desired outliers (over or under the threshold).
- The script iterates over each campaign and calls the outlier function to identify AdGroups with high CPAs.
- If outliers are found, they are added to a separate dataframe and annotated with the reason for being flagged.
- The final output dataframe is prepared with the relevant columns for reporting.
Vitals
- Script ID : 1055
- Client ID / Customer ID: 1306927027 / 60270153
- Action Type: Bulk Upload (Preview)
- Item Changed: AdGroup
- Output Columns: Account, Campaign, Group, AUTOMATION - Outlier
- Linked Datasource: M1 Report
- Reference Datasource: None
- Owner: dwaidhas@marinsoftware.com (dwaidhas@marinsoftware.com)
- Created by dwaidhas@marinsoftware.com on 2024-05-08 21:49
- Last Updated by dwaidhas@marinsoftware.com on 2024-05-08 21:50
> See it in Action
Python Code
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
##
## name: AdGroup Performance Outlier - 33d-lookback
## description:
## Tag AdGroup if CPA performance is abnormally high within Campaign
## 30-lookback excluding recent 3 days
##
## author: Dana Waidhas
## created: 2024-05-08
##
RPT_COL_DATE = 'Date'
RPT_COL_GROUP = 'Group'
RPT_COL_PUBLISHER = 'Publisher'
RPT_COL_ACCOUNT = 'Account'
RPT_COL_CAMPAIGN = 'Campaign'
RPT_COL_GROUP_ID = 'Group ID'
RPT_COL_PUB_COST = 'Pub. Cost $'
RPT_COL_COST_PER_CONV = 'Cost/Conv. $'
RPT_COL_ROAS = 'ROAS'
RPT_COL_CONV_RATE = 'Conv. Rate %'
RPT_COL_AVG_CPC = 'Avg. CPC $'
RPT_COL_IMPR = 'Impr.'
RPT_COL_CLICKS = 'Clicks'
RPT_COL_CONV = 'Conv.'
RPT_COL_REVENUE = 'Revenue $'
BULK_COL_ACCOUNT = 'Account'
BULK_COL_CAMPAIGN = 'Campaign'
BULK_COL_GROUP = 'Group'
BULK_COL_AUTOMATION_OUTLIER = 'AUTOMATION - Outlier'
outputDf[BULK_COL_AUTOMATION_OUTLIER] = numpy.nan
## Data Prep
print(inputDf[RPT_COL_DATE].min(), inputDf[RPT_COL_DATE].max())
# 30-day lookback without most recent 3 days due to conversion lag
start_date = pd.to_datetime(datetime.date.today() - datetime.timedelta(days=33))
end_date = pd.to_datetime(datetime.date.today() - datetime.timedelta(days=3))
df_reduced = inputDf[ (inputDf[RPT_COL_DATE] >= start_date) & (inputDf[RPT_COL_DATE] <= end_date) ]
if (df_reduced.shape[0] > 0):
print("reduced dates\\n", min(df_reduced[RPT_COL_DATE]), max(df_reduced[RPT_COL_DATE]))
else:
print("no more input to process")
# reduce to needed columns
df_reduced = df_reduced[[RPT_COL_ACCOUNT, RPT_COL_CAMPAIGN, RPT_COL_GROUP, RPT_COL_DATE, RPT_COL_PUB_COST, RPT_COL_CONV, RPT_COL_REVENUE, RPT_COL_CLICKS]].copy()
# Before grouping and summing, drop the RPT_COL_DATE column or any other non-numeric columns
df_reduced_numeric = df_reduced.drop(columns=[RPT_COL_DATE])
# Now perform the groupby and sum operation on the DataFrame with only numeric columns
df_group_perf = df_reduced_numeric.groupby([RPT_COL_ACCOUNT, RPT_COL_CAMPAIGN, RPT_COL_GROUP]).sum()
# remove rows without cost or conversions
df_group_perf = df_group_perf[(df_group_perf[RPT_COL_CONV] > 0) & (df_group_perf[RPT_COL_PUB_COST] > 0)]
# index by campaign
df_group_perf = df_group_perf.reset_index().set_index([RPT_COL_ACCOUNT, RPT_COL_CAMPAIGN]).sort_index()
# calculate features
df_group_perf[RPT_COL_COST_PER_CONV] = (df_group_perf[RPT_COL_PUB_COST] / df_group_perf[RPT_COL_CONV])
df_group_perf[RPT_COL_ROAS] = df_group_perf[RPT_COL_REVENUE] / df_group_perf[RPT_COL_PUB_COST]
df_group_perf[RPT_COL_CONV_RATE] = df_group_perf[RPT_COL_CONV] / df_group_perf[RPT_COL_CLICKS]
df_group_perf[RPT_COL_AVG_CPC] = (df_group_perf[RPT_COL_PUB_COST] / df_group_perf[RPT_COL_CLICKS])
## Define Anomaly Fuctions
# Finds anomalies using a certain function (e.g. sigma rule, IRQ etc.)
# data: DataFrame
# Dataset with features
# func: func
# Function to use to find anomalies
# features: list
# Feature list
# thresh: int
# Threshold value (e.g. 2/3 * sigma, 2/3 * IRQ)
# Returns: tuple
def get_feature_anomalies(data, func, features=None, thresh=3):
if features:
features_to_check = features
else:
features_to_check = data.columns
outliers_over = pd.Series(data=[False] * data.shape[0], index=data[features_to_check].index, name='is_outlier')
outliers_under = pd.Series(data=[False] * data.shape[0], index=data[features_to_check].index, name='is_outlier')
anomalies_summary = {}
for feature in features_to_check:
anomalies_mask_over, anomalies_mask_under, upper_bound, lower_bound = func(data, feature, thresh=thresh)
# Checking if any element in the Series is True
anomalies_mask_combined = anomalies_mask_over | anomalies_mask_under
anomalies_summary[feature] = [upper_bound, lower_bound, sum(anomalies_mask_combined), 100 * sum(anomalies_mask_combined) / len(anomalies_mask_combined)]
outliers_over[anomalies_mask_over[anomalies_mask_over].index] = True
outliers_under[anomalies_mask_under[anomalies_mask_under].index] = True
anomalies_summary = pd.DataFrame(anomalies_summary).T
anomalies_summary.columns = ['upper_bound', 'lower_bound', 'anomalies_count', 'anomalies_percentage']
anomalies_ration = round(anomalies_summary['anomalies_percentage'].sum(), 2)
return anomalies_summary, outliers_over, outliers_under
# Finds outliers/anomalies using IRQ
# data: DataFrame
# col: str
# thresh: int
# Number of IRQ to apply
# Returns: Series
# Boolean Series Mask of outliers
def is_anomaly_irq(data, col, thresh):
IRQ = data[col].quantile(0.75) - data[col].quantile(0.25)
upper_bound = data[col].quantile(0.75) + (thresh * IRQ)
lower_bound = data[col].quantile(0.25) - (thresh * IRQ)
# print("IRQ calc: ", col, IRQ, upper_bound, lower_bound)
# anomalies_mask = pd.concat([data[col] > upper_bound, data[col] < lower_bound], axis=1).any(1)
anomalies_mask_over = data[col] > upper_bound
anomalies_mask_under = data[col] < lower_bound
# print("Anomalies mask: ", (anomalies_mask_over, anomalies_mask_under))
return anomalies_mask_over, anomalies_mask_under, upper_bound, lower_bound
def find_peer_anomaly(df_slice, features, irq_threshold=1.8, outliers_desired=(True, True)):
(want_outliers_over, want_outliers_under) = outliers_desired
if (df_slice.shape[0] < 3):
return
idx = df_slice.index.unique()
df_slice.reset_index(inplace=True)
anomalies_summary_irq, outlier_over_irq, outlier_under_irq = get_feature_anomalies( \
df_slice, \
func=is_anomaly_irq, \
features=features, \
thresh=irq_threshold)
median_cost = df_slice[RPT_COL_PUB_COST].median()
# print(f"over: {outlier_over_irq}")
# print("under: {outlier_under_irq}")
# include over/under outliers as desired
is_outlier_irq = np.logical_or(
np.logical_and(want_outliers_over, outlier_over_irq),
np.logical_and(want_outliers_under, outlier_under_irq)
)
# print("is_outlier\\n", is_outlier_irq)
# ignore anomaly from low spend adgroups (greater than campaign median)
is_outlier_irq = np.logical_and(is_outlier_irq, df_slice[RPT_COL_PUB_COST] > median_cost)
if sum(is_outlier_irq) > 0:
print(">>> ANOMALY", idx)
print(anomalies_summary_irq)
cols = [RPT_COL_GROUP, RPT_COL_PUB_COST, RPT_COL_CONV, RPT_COL_REVENUE] + features
print(df_slice.loc[is_outlier_irq, cols])
return is_outlier_irq
## Find CPA Anomalies
print("input shape:", df_group_perf.shape)
df_anomalies = pd.DataFrame()
# annotate via Marin Dimensions
def rowFunc(row):
return 'CPA ${:,.2f} is much higher than campaign avg ${:,.2f}'.format(
row[RPT_COL_COST_PER_CONV], \
row[RPT_COL_COST_PER_CONV + '_median']
)
for campaign_idx in df_group_perf.index.unique():
df_campaign = df_group_perf.loc[[campaign_idx]].copy()
df_campaign[RPT_COL_COST_PER_CONV + '_median'] = df_campaign[RPT_COL_COST_PER_CONV].mean()
df_campaign[BULK_COL_AUTOMATION_OUTLIER] = np.nan
outliers = find_peer_anomaly(df_campaign, [RPT_COL_COST_PER_CONV], irq_threshold=2, outliers_desired=(True,False))
if outliers is not None and sum(outliers) > 0:
df_outliers = df_campaign.loc[outliers].copy()
df_outliers[BULK_COL_AUTOMATION_OUTLIER] = df_outliers.apply(rowFunc, axis=1)
print(df_outliers)
df_anomalies = pd.concat([df_anomalies, df_outliers], axis=0)
## Prepare Output
print(df_anomalies.columns)
df_anomalies = pd.DataFrame(columns=[RPT_COL_ACCOUNT, RPT_COL_CAMPAIGN, RPT_COL_GROUP, BULK_COL_AUTOMATION_OUTLIER])
Post generated on 2024-05-15 07:44:05 GMT