Script 1053: AdGroup CPA Outlier
Purpose:
The Python script identifies and tags AdGroups within a campaign where the Cost Per Acquisition (CPA) performance is significantly higher than expected, using a 30-day lookback period excluding the most recent day due to conversion lag.
To Elaborate
The script is designed to detect anomalies in the CPA performance of AdGroups within advertising campaigns. It uses a 30-day historical data window, excluding the most recent day to account for conversion lag, to analyze the CPA metrics. The script applies statistical methods, specifically the Interquartile Range (IQR), to identify outliers in CPA performance. If an AdGroup’s CPA is significantly higher than the campaign average, it is tagged as an outlier. This helps advertisers identify and address potential inefficiencies in their ad spending, ensuring that resources are allocated effectively across campaigns.
Walking Through the Code
- Data Preparation:
- The script begins by filtering the input data to focus on a 30-day period, excluding the most recent day due to conversion lag.
- It reduces the dataset to essential columns such as account, campaign, group, date, publication cost, conversions, revenue, and clicks.
- The data is grouped by account, campaign, and group, summing up key metrics like publication cost, conversions, revenue, and clicks.
- Anomaly Detection:
- The script defines functions to detect anomalies using statistical methods like the IQR.
- It calculates features such as cost per conversion, ROAS, conversion rate, and average CPC for each group.
- Anomalies are identified by comparing these features against thresholds derived from the IQR method.
- The script checks for outliers in CPA performance, marking those significantly above the campaign median as anomalies.
- Output Preparation:
- If anomalies are detected, they are tagged with a descriptive message indicating the CPA discrepancy.
- The script compiles these tagged anomalies into an output DataFrame for further analysis or reporting.
- If no anomalies are found, an empty DataFrame is prepared, indicating no significant CPA outliers.
Vitals
- Script ID : 1053
- Client ID / Customer ID: 1306927757 / 60270153
- Action Type: Bulk Upload
- Item Changed: AdGroup
- Output Columns: Account, Campaign, Group, AUTOMATION - Outlier
- Linked Datasource: M1 Report
- Reference Datasource: None
- Owner: dwaidhas@marinsoftware.com (dwaidhas@marinsoftware.com)
- Created by dwaidhas@marinsoftware.com on 2024-05-08 21:32
- Last Updated by dwaidhas@marinsoftware.com on 2024-05-15 14:43
> See it in Action
Python Code
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
#
# Tag AdGroup if CPA performance is abnormally high within Campaign
#
#
# Author: Michael S. Huang
# Date: 2023-02-22
RPT_COL_GROUP = 'Group'
RPT_COL_DATE = 'Date'
RPT_COL_ACCOUNT = 'Account'
RPT_COL_CAMPAIGN = 'Campaign'
RPT_COL_CAMPAIGN_ID = 'Campaign ID'
RPT_COL_GROUP_ID = 'Group ID'
RPT_COL_PUB_COST = 'Pub. Cost $'
RPT_COL_COST_PER_CONV = 'Cost/Conv. $'
RPT_COL_ROAS = 'ROAS'
RPT_COL_CONV_RATE = 'Conv. Rate %'
RPT_COL_AVG_CPC = 'Avg. CPC $'
RPT_COL_CLICKS = 'Clicks'
RPT_COL_CONV = 'Conv.'
RPT_COL_REVENUE = 'Revenue $'
RPT_COL_IMPR = 'Impr.'
BULK_COL_ACCOUNT = 'Account'
BULK_COL_CAMPAIGN = 'Campaign'
BULK_COL_AUTOMATION_OUTLIER = 'AUTOMATION - Outlier'
outputDf[BULK_COL_AUTOMATION_OUTLIER] = numpy.nan
################## Configurable Param ##################
# IQR 1.5 = looks for rare events having less than 3% of occuring; lower includes more events
ANOMALY_IQR_THRESHOLD = 0.9
LOOKBACK_DAYS = 30
CONVERSION_LAG_DAYS = 1
########################################################
## Data Prep
print(inputDf[RPT_COL_DATE].min(), inputDf[RPT_COL_DATE].max())
# 30-day lookback without most recent CONVERSION_LAG_DAYS days due to conversion lag
start_date = pd.to_datetime(datetime.date.today() - datetime.timedelta(days=CONVERSION_LAG_DAYS+LOOKBACK_DAYS))
end_date = pd.to_datetime(datetime.date.today() - datetime.timedelta(days=CONVERSION_LAG_DAYS))
df_reduced = inputDf[ (inputDf[RPT_COL_DATE] >= start_date) & (inputDf[RPT_COL_DATE] <= end_date) ]
if (df_reduced.shape[0] > 0):
print("reduced dates\\n", min(df_reduced[RPT_COL_DATE]), max(df_reduced[RPT_COL_DATE]))
else:
print("no more input to process")
# reduce to needed columns
df_reduced = df_reduced[[RPT_COL_ACCOUNT, RPT_COL_CAMPAIGN, RPT_COL_GROUP, RPT_COL_DATE, RPT_COL_PUB_COST, RPT_COL_CONV, RPT_COL_REVENUE, RPT_COL_CLICKS]].copy()
# specify the columns to sum
cols_to_sum = [RPT_COL_PUB_COST, RPT_COL_CONV, RPT_COL_REVENUE, RPT_COL_CLICKS]
# apply sum operation only to the specified columns
df_group_perf = df_reduced.groupby([RPT_COL_ACCOUNT, RPT_COL_CAMPAIGN, RPT_COL_GROUP])[cols_to_sum].sum()
# remove rows without cost or conversions
df_group_perf = df_group_perf[(df_group_perf[RPT_COL_CONV] > 0) & (df_group_perf[RPT_COL_PUB_COST] > 0)]
# index by campaign
df_group_perf = df_group_perf.reset_index().set_index([RPT_COL_ACCOUNT, RPT_COL_CAMPAIGN]).sort_index()
# calculate features
df_group_perf[RPT_COL_COST_PER_CONV] = (df_group_perf[RPT_COL_PUB_COST] / df_group_perf[RPT_COL_CONV])
df_group_perf[RPT_COL_ROAS] = df_group_perf[RPT_COL_REVENUE] / df_group_perf[RPT_COL_PUB_COST]
df_group_perf[RPT_COL_CONV_RATE] = df_group_perf[RPT_COL_CONV] / df_group_perf[RPT_COL_CLICKS]
df_group_perf[RPT_COL_AVG_CPC] = (df_group_perf[RPT_COL_PUB_COST] / df_group_perf[RPT_COL_CLICKS])
## Define Anomaly Fuctions
# Finds anomalies using a certain function (e.g. sigma rule, iqr etc.)
# data: DataFrame
# Dataset with features
# func: func
# Function to use to find anomalies
# features: list
# Feature list
# thresh: int
# Threshold value (e.g. 2/3 * sigma, 2/3 * iqr)
# Returns: tuple
def get_feature_anomalies(data, func, features=None, thresh=1.5):
if features:
features_to_check = features
else:
features_to_check = data.columns
outliers_over = pd.Series(data=[False] * data.shape[0], index=data[features_to_check].index, name='is_outlier')
outliers_under = pd.Series(data=[False] * data.shape[0], index=data[features_to_check].index, name='is_outlier')
anomalies_summary = {}
for feature in features_to_check:
anomalies_mask_over, anomalies_mask_under, upper_bound, lower_bound = func(data, feature, thresh=thresh)
anomalies_mask_combined = pd.concat([anomalies_mask_over, anomalies_mask_under], axis=1).any(axis=1)
anomalies_summary[feature] = [upper_bound, lower_bound, sum(anomalies_mask_combined), 100*sum(anomalies_mask_combined)/len(anomalies_mask_combined)]
outliers_over[anomalies_mask_over[anomalies_mask_over].index] = True
outliers_under[anomalies_mask_under[anomalies_mask_under].index] = True
# print("anomalies_mask_combined: ", anomalies_mask_combined)
# print("Outliers: ", outliers)
anomalies_summary = pd.DataFrame(anomalies_summary).T
anomalies_summary.columns=['upper_bound', 'lower_bound', 'anomalies_count', 'anomalies_percentage']
anomalies_ration = round(anomalies_summary['anomalies_percentage'].sum(), 2)
# print(f'Total Outliers Ration: {anomalies_ration} %')
return anomalies_summary, outliers_over, outliers_under
# Finds outliers/anomalies using iqr
# data: DataFrame
# col: str
# thresh: int
# Number of IQR to apply
# Returns: Series
# Boolean Series Mask of outliers
def is_anomaly_iqr(data, col, thresh):
IQR = data[col].quantile(0.75) - data[col].quantile(0.25)
upper_bound = data[col].quantile(0.75) + (thresh * IQR)
lower_bound = data[col].quantile(0.25) - (thresh * IQR)
# print("IQR calc: ", col, IQR, upper_bound, lower_bound)
# anomalies_mask = pd.concat([data[col] > upper_bound, data[col] < lower_bound], axis=1).any(axis=1)
anomalies_mask_over = data[col] > upper_bound
anomalies_mask_under = data[col] < lower_bound
# print("Anomalies mask: ", (anomalies_mask_over, anomalies_mask_under))
return anomalies_mask_over, anomalies_mask_under, upper_bound, lower_bound
def find_peer_anomaly(df_slice, features, iqr_threshold=1.5, outliers_desired=(True, True)):
(want_outliers_over, want_outliers_under) = outliers_desired
if (df_slice.shape[0] < 3):
return
idx = df_slice.index.unique()
df_slice.reset_index(inplace=True)
anomalies_summary_iqr, outlier_over_iqr, outlier_under_iqr = get_feature_anomalies( \
df_slice, \
func=is_anomaly_iqr, \
features=features, \
thresh=iqr_threshold)
median_cost = df_slice[RPT_COL_PUB_COST].median()
# print(f"over: {outlier_over_iqr}")
# print("under: {outlier_under_iqr}")
# include over/under outliers as desired
is_outlier_iqr = np.logical_or(
np.logical_and(want_outliers_over, outlier_over_iqr),
np.logical_and(want_outliers_under, outlier_under_iqr)
)
# print("is_outlier\\n", is_outlier_iqr)
# ignore anomaly from low spend adgroups (greater than campaign median)
is_outlier_iqr = np.logical_and(is_outlier_iqr, df_slice[RPT_COL_PUB_COST] > median_cost)
if sum(is_outlier_iqr) > 0:
print(">>> ANOMALY", idx)
print(anomalies_summary_iqr)
cols = [RPT_COL_GROUP, RPT_COL_PUB_COST, RPT_COL_CONV, RPT_COL_REVENUE] + features
print(df_slice.loc[is_outlier_iqr, cols])
return is_outlier_iqr
## Find CPA Anomalies
print("df_group_perf shape:", df_group_perf.shape)
print("df_group_perf", tableize(df_group_perf.head()))
df_anomalies = pd.DataFrame()
# annotate via Marin Dimensions
def rowFunc(row):
return 'CPA ${:,.2f} is much higher than campaign avg ${:,.2f}'.format(
row[RPT_COL_COST_PER_CONV], \
row[RPT_COL_COST_PER_CONV + '_median']
)
for campaign_idx in df_group_perf.index.unique():
df_campaign = df_group_perf.loc[[campaign_idx]].copy()
df_campaign[RPT_COL_COST_PER_CONV + '_median'] = df_campaign[RPT_COL_COST_PER_CONV].mean()
df_campaign[BULK_COL_AUTOMATION_OUTLIER] = np.nan
outliers = find_peer_anomaly(df_campaign, [RPT_COL_COST_PER_CONV], iqr_threshold=ANOMALY_IQR_THRESHOLD, outliers_desired=(True,False))
if outliers is not None and sum(outliers) > 0:
df_outliers = df_campaign.loc[outliers].copy()
df_outliers[BULK_COL_AUTOMATION_OUTLIER] = df_outliers.apply(rowFunc, axis=1)
print(df_outliers)
df_anomalies = pd.concat([df_anomalies, df_outliers], axis=0)
## Prepare Output
if df_anomalies.empty:
outputDf = pd.DataFrame(columns=[RPT_COL_ACCOUNT, RPT_COL_CAMPAIGN, RPT_COL_GROUP, BULK_COL_AUTOMATION_OUTLIER])
print("No anomalies found")
else:
print("anomaly examples", tableize(df_anomalies.head()))
outputDf = df_anomalies[[RPT_COL_ACCOUNT, RPT_COL_CAMPAIGN, RPT_COL_GROUP, BULK_COL_AUTOMATION_OUTLIER]]
print("output size", outputDf.shape)
print("output examples", tableize(outputDf.head()))
Post generated on 2025-03-11 01:25:51 GMT