Script 1041: Budget Staging for Strategies via GSheets

Purpose

The Python script updates strategy spend targets by copying monthly budget data from Google Sheets to a staging area, matching abbreviations with strategies.

To Elaborate

The script is designed to facilitate the transfer of monthly budget data from Google Sheets into a system that manages strategy spend targets. It matches the ‘Abbreviation’ column from the Google Sheets with the ‘Strategy’ field in the system to ensure accurate data alignment. The script processes the data by cleaning and transforming it, ensuring that only valid and relevant budget information is updated. It handles data both locally and on a server, with specific configurations for each environment. The script also includes mechanisms to identify and manage changes in budget allocations, ensuring that only significant updates are applied. This process is crucial for maintaining accurate and up-to-date financial planning and allocation within the organization.

Walking Through the Code

  1. Local Mode Configuration:
    • The script begins by setting up configurations for local execution, including paths for downloading and loading data.
    • It checks whether the code is running on a server or locally, and loads data from a pickle file if running locally.
  2. Data Loading and Preparation:
    • The script loads data from Google Sheets, specifically targeting the current month’s budget data.
    • It constructs a column key based on the current month to access the correct budget data from the sheets.
    • The data is cleaned by removing empty rows and ensuring that strategy and target fields are in the correct format.
  3. Data Cleanup and Validation:
    • The input data is cleaned by converting relevant columns to the appropriate data types and filtering out invalid entries.
    • The script ensures that only budget-related strategies are processed by applying specific constraints.
  4. Data Merging and Comparison:
    • The cleaned input data is merged with the current month’s budget data from Google Sheets.
    • The script identifies changes in the strategy targets by comparing the merged data with the original input data.
  5. Output Preparation:
    • The script prepares the final output by renaming columns and selecting only the changed data for further processing.
    • It includes functionality to export the results to CSV files for local development and debugging purposes.

Vitals

  • Script ID : 1041
  • Client ID / Customer ID: 1306926629 / 60270083
  • Action Type: Bulk Upload (Preview)
  • Item Changed: Strategy
  • Output Columns: Strategy, Spend Target, Goal
  • Linked Datasource: M1 Report
  • Reference Datasource: Google Sheets
  • Owner: dwaidhas@marinsoftware.com (dwaidhas@marinsoftware.com)
  • Created by dwaidhas@marinsoftware.com on 2024-04-30 19:36
  • Last Updated by Michael Huang on 2024-09-19 03:44
> See it in Action

Python Code

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
##
## name: Strategy Target Staging - GSheets - All Campus
## description:
##  Copy Program Budgets from staging GSheets to update Strategy Spend Targets
##  Use GSheets 'Abbrevation' column to match with 'Strategy'
## 
## author: Michael S. Huang, Dana Waidhas
## created: 2024-03-15
## 

########### START - Local Mode Config ###########
# Step 1: Uncomment download_preview_input flag and run Preview successfully with the Datasources you want
download_preview_input=False
# Step 2: In MarinOne, go to Scripts -> Preview -> Logs, download 'dataSourceDict' pickle file, and update pickle_path below
# pickle_path = ''
pickle_path = '/Users/mhuang/Downloads/pickle/allcampus_budget_staging_20240507_with_goal.pkl'
# Step 3: Copy this script into local IDE with Python virtual env loaded with pandas and numpy.
# Step 4: Run locally with below code to init dataSourceDict

# determine if code is running on server or locally
def is_executing_on_server():
    try:
        # Attempt to access a known restricted builtin
        dict_items = dataSourceDict.items()
        return True
    except NameError:
        # NameError: dataSourceDict object is missing (indicating not on server)
        return False

local_dev = False

if is_executing_on_server():
    print("Code is executing on server. Skip init.")
elif len(pickle_path) > 3:
    print("Code is NOT executing on server. Doing init.")
    local_dev = True
    # load dataSourceDict via pickled file
    import pickle
    dataSourceDict = pickle.load(open(pickle_path, 'rb'))

    # print shape and first 5 rows for each entry in dataSourceDict
    for key, value in dataSourceDict.items():
        print(f"Shape of dataSourceDict[{key}]: {value.shape}")
        print(f"First 5 rows of dataSourceDict[{key}]:\n{value.head(5)}")

    # set outputDf same as inputDf
    outputDf = dataSourceDict["1"].copy()

    # setup timezone
    import datetime
    CLIENT_TIMEZONE = datetime.timezone(datetime.timedelta(hours=+8))

    # import pandas
    import pandas as pd
    import numpy as np

    # import Marin util functions
    from marin_scripts_utils import tableize, select_changed
else:
    print("Running locally but no pickle path defined. dataSourceDict not loaded.")
    exit(1)
########### END - Local Mode Setup ###########

# dial forward to preview next month budgets
# CLIENT_TIMEZONE = datetime.timezone(datetime.timedelta(hours=+8))

# today in client timezone
today = datetime.datetime.now(CLIENT_TIMEZONE).date()

# primary data source and columns
inputDf = dataSourceDict["1"]
RPT_COL_STRATEGY = 'Strategy'
RPT_COL_CONSTRAINT = 'Constraint Type'
RPT_COL_GOAL = 'Goal'
RPT_COL_STRATEGY_TARGET = 'Target'

# reference data source and columns
gSheetsDf = dataSourceDict["2_1"]  # gsheets dataframe (first sheet)
# To access 10th row of Column C, use gSheetsDf.loc[10, 'C']

# output columns and initial values
BULK_COL_GOAL = 'Goal'
BULK_COL_SPEND_TARGET = 'Spend Target'
outputDf[BULK_COL_GOAL] = "<<YOUR VALUE>>"
outputDf[BULK_COL_SPEND_TARGET] = "<<YOUR VALUE>>"

########### User Code Starts Here ###########

### Load Current Month Budgets from GSheets and rename

# For debugging, set arbitrary date
# today = datetime.date(2024, 4, 2)

# Construct column key by mapping current month to canonical column name
# Assume column F is January, G is February, H is March, Q is Dec, etc. In terms of integer months, F=1, G=2, H=3,.., Q=12.
column_key = chr(64 + today.month + 5)  
print(f"GSheets column key for current month: {today.strftime(('%B'))} => {column_key}")

# load current month
# - skip first 3 rows via .loc[2:]
# - 'Abbreviation' is column T
# - budgets from January to December are on columns F to Q
current_month_budgets = dataSourceDict['2_1'] \
                        .loc[2:, ['T', column_key]] \
                        .rename(columns={ \
                            'T' : RPT_COL_STRATEGY, \
                            column_key : RPT_COL_STRATEGY_TARGET \
                        })

print("current_month_budgets.shape", current_month_budgets.shape)
print("current_month_budgets.info", current_month_budgets.info())
print("current_month_budgets first 10 rows", current_month_budgets.head(10))

### cleanup Budget values from GSheets
# remove empty strategy rows
current_month_budgets = current_month_budgets.loc[current_month_budgets[RPT_COL_STRATEGY].notnull()]
# make sure Strategy is STR
current_month_budgets[RPT_COL_STRATEGY] = current_month_budgets[RPT_COL_STRATEGY].astype(str)
# make sure target is float; remove prefix if not
# note: can't check for `object` since not imported, so use `0` instead
if current_month_budgets[RPT_COL_STRATEGY_TARGET].dtype == 'O':
    current_month_budgets[RPT_COL_STRATEGY_TARGET] = current_month_budgets[RPT_COL_STRATEGY_TARGET] \
                                    .str.replace('US$', '', case=False, regex=False) \
                                    .str.replace('$', '', case=False, regex=False) \
                                    .str.replace(',', '') \
                                    .str.strip() \
                                    .astype(float)

# remove empty target rows
has_strategy = current_month_budgets[RPT_COL_STRATEGY].notnull() & \
                (current_month_budgets[RPT_COL_STRATEGY].str.len() > 3)
has_strategy_target = current_month_budgets[RPT_COL_STRATEGY_TARGET].notnull() & \
                (current_month_budgets[RPT_COL_STRATEGY_TARGET] > 0.5)
current_month_budgets = current_month_budgets.loc[has_strategy & has_strategy_target]

print("after cleanup gsheets")
print("current_month_budgets.shape", current_month_budgets.shape)
print("current_month_budgets.info", current_month_budgets.info())
print(current_month_budgets.head().to_string())

### Cleanup input

# Convert RPT_COL_STRATEGY_TARGET to numeric, coercing errors to NaN
inputDf[RPT_COL_STRATEGY_TARGET] = pd.to_numeric(inputDf[RPT_COL_STRATEGY_TARGET], errors='coerce')
# Replace NaN values with 0.0 if that's the desired behavior
inputDf[RPT_COL_STRATEGY_TARGET].fillna(0.0, inplace=True)

# convert Strategy column into string and remove blank or non-numeric rows
inputDf[RPT_COL_STRATEGY] = inputDf[RPT_COL_STRATEGY].astype(str)
valid_abbrev = inputDf[RPT_COL_STRATEGY].str.len() > 3

# convert Constraint column into string
# NB: Bulk needs to include Goal column in order to change Spend Target, hence, 
#  remove non-Budget strategies just in case.
inputDf[RPT_COL_CONSTRAINT] = inputDf[RPT_COL_CONSTRAINT].astype(str)
budget_constraint = inputDf[RPT_COL_CONSTRAINT] == 'Budget'

# apply cleanup filters
inputDf = inputDf.loc[valid_abbrev & budget_constraint]

print("after cleanup inputDf")
print("inputDf.shape", inputDf.shape)
print("inputDf.info", inputDf.info())

# fill in missing target as 0 for comparison later
inputDf = inputDf.fillna(value={RPT_COL_STRATEGY_TARGET: 0})

# make copy of input for use with select_changed
originalDf = inputDf.copy()

### Merge inputDf with current_month_budgets, and fill in missing target as 0
mergedDf = inputDf.merge(current_month_budgets, on=RPT_COL_STRATEGY, how='left', suffixes=('_old', '')) \
                  .fillna(value={RPT_COL_STRATEGY_TARGET: 0})

print("mergedDf shape", mergedDf.shape)
print("mergedDf", mergedDf.tail(5).to_string())

outputDf, debugDf = select_changed(mergedDf, 
                          originalDf,
                          diff_cols=[RPT_COL_STRATEGY_TARGET],
                          select_cols=[RPT_COL_STRATEGY, RPT_COL_GOAL, RPT_COL_STRATEGY_TARGET],
                          merged_cols=[RPT_COL_STRATEGY]
                          )

# Bulk column is 'Spend Target', whereas report is 'Target'
outputDf.rename(columns={RPT_COL_STRATEGY_TARGET: BULK_COL_SPEND_TARGET}, inplace=True)


change_to_zero_target = (debugDf[RPT_COL_STRATEGY_TARGET + '_new'] < 1) & \
                        (debugDf[RPT_COL_STRATEGY_TARGET + '_orig'] > 1)
print("count of campaigns with target cleared", sum(change_to_zero_target))
print("campaigns with target cleared", tableize(debugDf.loc[change_to_zero_target].head()))

print("outputDf.shape", outputDf.shape)
print("outputDf sample")
print(tableize(outputDf.tail(10)))

## local debug
if local_dev:
    output_filename = 'outputDf.csv'
    outputDf.to_csv(output_filename, index=False)
    print(f"Local Dev: Output written to: {output_filename}")

    debug_filename = 'debugDf.csv'
    debugDf.to_csv(debug_filename, index=False)
    print(f"Local Dev: Debug written to: {debug_filename}")

Post generated on 2024-11-27 06:58:46 GMT

comments powered by Disqus