Script 1041: Budget Staging for Strategies via GSheets
Purpose
Copy Monthly Budget from Staging GSheets maintained by customer and match Abbreviation from GSheets with Strategy in Marin.
To Elaborate
The Python script solves the problem of copying program budgets from staging GSheets to update strategy spend targets in Marin. It uses the “Abbreviation” column in GSheets to match with the “Strategy” column in Marin. The script loads the current month budgets from GSheets, cleans up the data, and merges it with the input data from Marin. It then selects the changed rows and outputs the updated spend targets.
Walking Through the Code
- The script starts by setting up the local mode configuration and checking if it is running on the server or locally.
- If running locally, it loads the dataSourceDict from a pickled file and sets up the necessary dependencies.
- It defines the primary data source and columns, as well as the reference data source and columns.
- The script initializes the output columns with initial values.
- It loads the current month budgets from GSheets and renames the columns.
- The script cleans up the budget values from GSheets by removing empty strategy rows and ensuring the strategy is in the correct format.
- It cleans up the input data by converting the strategy target to numeric and removing blank or non-numeric rows.
- The script merges the input data with the current month budgets and fills in missing targets as 0.
- It selects the changed rows and renames the “Target” column to “Spend Target” in the output.
- The script identifies campaigns with cleared targets and outputs the final output and debug dataframes.
- If running in local development mode, it writes the output and debug dataframes to CSV files.
Vitals
- Script ID : 1041
- Client ID / Customer ID: 1306926629 / 60270083
- Action Type: Bulk Upload (Preview)
- Item Changed: Strategy
- Output Columns: Strategy, Spend Target, Goal
- Linked Datasource: M1 Report
- Reference Datasource: Google Sheets
- Owner: dwaidhas@marinsoftware.com (dwaidhas@marinsoftware.com)
- Created by dwaidhas@marinsoftware.com on 2024-04-30 19:36
- Last Updated by dwaidhas@marinsoftware.com on 2024-05-13 21:28
> See it in Action
Python Code
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
##
## name: Strategy Target Staging - GSheets - All Campus
## description:
## Copy Program Budgets from staging GSheets to update Strategy Spend Targets
## Use GSheets 'Abbrevation' column to match with 'Strategy'
##
## author: Michael S. Huang, Dana Waidhas
## created: 2024-03-15
##
########### START - Local Mode Config ###########
# Step 1: Uncomment download_preview_input flag and run Preview successfully with the Datasources you want
download_preview_input=False
# Step 2: In MarinOne, go to Scripts -> Preview -> Logs, download 'dataSourceDict' pickle file, and update pickle_path below
# pickle_path = ''
pickle_path = '/Users/mhuang/Downloads/pickle/allcampus_budget_staging_20240507_with_goal.pkl'
# Step 3: Copy this script into local IDE with Python virtual env loaded with pandas and numpy.
# Step 4: Run locally with below code to init dataSourceDict
# determine if code is running on server or locally
def is_executing_on_server():
try:
# Attempt to access a known restricted builtin
dict_items = dataSourceDict.items()
return True
except NameError:
# NameError: dataSourceDict object is missing (indicating not on server)
return False
local_dev = False
if is_executing_on_server():
print("Code is executing on server. Skip init.")
elif len(pickle_path) > 3:
print("Code is NOT executing on server. Doing init.")
local_dev = True
# load dataSourceDict via pickled file
import pickle
dataSourceDict = pickle.load(open(pickle_path, 'rb'))
# print shape and first 5 rows for each entry in dataSourceDict
for key, value in dataSourceDict.items():
print(f"Shape of dataSourceDict[{key}]: {value.shape}")
print(f"First 5 rows of dataSourceDict[{key}]:\n{value.head(5)}")
# set outputDf same as inputDf
outputDf = dataSourceDict["1"].copy()
# setup timezone
import datetime
CLIENT_TIMEZONE = datetime.timezone(datetime.timedelta(hours=+8))
# import pandas
import pandas as pd
import numpy as np
# import Marin util functions
from marin_scripts_utils import tableize, select_changed
else:
print("Running locally but no pickle path defined. dataSourceDict not loaded.")
exit(1)
########### END - Local Mode Setup ###########
# dial forward to preview next month budgets
# CLIENT_TIMEZONE = datetime.timezone(datetime.timedelta(hours=+8))
# today in client timezone
today = datetime.datetime.now(CLIENT_TIMEZONE).date()
# primary data source and columns
inputDf = dataSourceDict["1"]
RPT_COL_STRATEGY = 'Strategy'
RPT_COL_CONSTRAINT = 'Constraint'
RPT_COL_GOAL = 'Goal'
RPT_COL_STRATEGY_TARGET = 'Target'
# reference data source and columns
gSheetsDf = dataSourceDict["2_1"] # gsheets dataframe (first sheet)
# To access 10th row of Column C, use gSheetsDf.loc[10, 'C']
# output columns and initial values
BULK_COL_GOAL = 'Goal'
BULK_COL_SPEND_TARGET = 'Spend Target'
outputDf[BULK_COL_GOAL] = "<<YOUR VALUE>>"
outputDf[BULK_COL_SPEND_TARGET] = "<<YOUR VALUE>>"
########### User Code Starts Here ###########
### Load Current Month Budgets from GSheets and rename
# For debugging, set arbitrary date
# today = datetime.date(2024, 4, 2)
# Construct column key by mapping current month to canonical column name
# Assume column F is January, G is February, H is March, Q is Dec, etc. In terms of integer months, F=1, G=2, H=3,.., Q=12.
column_key = chr(64 + today.month + 5)
print(f"GSheets column key for current month: {today.strftime(('%B'))} => {column_key}")
# load current month
# - skip first 3 rows via .loc[2:]
# - 'Abbreviation' is column T
# - budgets from January to December are on columns F to Q
current_month_budgets = dataSourceDict['2_1'] \
.loc[2:, ['T', column_key]] \
.rename(columns={ \
'T' : RPT_COL_STRATEGY, \
column_key : RPT_COL_STRATEGY_TARGET \
})
print("current_month_budgets.shape", current_month_budgets.shape)
print("current_month_budgets.info", current_month_budgets.info())
print("current_month_budgets first 10 rows", current_month_budgets.head(10))
### cleanup Budget values from GSheets
# remove empty strategy rows
current_month_budgets = current_month_budgets.loc[current_month_budgets[RPT_COL_STRATEGY].notnull()]
# make sure Strategy is STR
current_month_budgets[RPT_COL_STRATEGY] = current_month_budgets[RPT_COL_STRATEGY].astype(str)
# make sure target is float; remove prefix if not
# note: can't check for `object` since not imported, so use `0` instead
if current_month_budgets[RPT_COL_STRATEGY_TARGET].dtype == 'O':
current_month_budgets[RPT_COL_STRATEGY_TARGET] = current_month_budgets[RPT_COL_STRATEGY_TARGET] \
.str.replace('US$', '', case=False, regex=False) \
.str.replace('$', '', case=False, regex=False) \
.str.replace(',', '') \
.str.strip() \
.astype(float)
# remove empty target rows
has_strategy = current_month_budgets[RPT_COL_STRATEGY].notnull() & \
(current_month_budgets[RPT_COL_STRATEGY].str.len() > 3)
has_strategy_target = current_month_budgets[RPT_COL_STRATEGY_TARGET].notnull() & \
(current_month_budgets[RPT_COL_STRATEGY_TARGET] > 0.5)
current_month_budgets = current_month_budgets.loc[has_strategy & has_strategy_target]
print("after cleanup gsheets")
print("current_month_budgets.shape", current_month_budgets.shape)
print("current_month_budgets.info", current_month_budgets.info())
print(current_month_budgets.head().to_string())
### Cleanup input
# Convert RPT_COL_STRATEGY_TARGET to numeric, coercing errors to NaN
inputDf[RPT_COL_STRATEGY_TARGET] = pd.to_numeric(inputDf[RPT_COL_STRATEGY_TARGET], errors='coerce')
# Replace NaN values with 0.0 if that's the desired behavior
inputDf[RPT_COL_STRATEGY_TARGET].fillna(0.0, inplace=True)
# convert Strategy column into string and remove blank or non-numeric rows
inputDf[RPT_COL_STRATEGY] = inputDf[RPT_COL_STRATEGY].astype(str)
valid_abbrev = inputDf[RPT_COL_STRATEGY].str.len() > 3
# convert Constraint column into string
# NB: Bulk needs to include Goal column in order to change Spend Target, hence,
# remove non-Budget strategies just in case.
inputDf[RPT_COL_CONSTRAINT] = inputDf[RPT_COL_CONSTRAINT].astype(str)
budget_constraint = inputDf[RPT_COL_CONSTRAINT] == 'Budget'
# apply cleanup filters
inputDf = inputDf.loc[valid_abbrev & budget_constraint]
print("after cleanup inputDf")
print("inputDf.shape", inputDf.shape)
print("inputDf.info", inputDf.info())
# fill in missing target as 0 for comparison later
inputDf = inputDf.fillna(value={RPT_COL_STRATEGY_TARGET: 0})
# make copy of input for use with select_changed
originalDf = inputDf.copy()
### Merge inputDf with current_month_budgets, and fill in missing target as 0
mergedDf = inputDf.merge(current_month_budgets, on=RPT_COL_STRATEGY, how='left', suffixes=('_old', '')) \
.fillna(value={RPT_COL_STRATEGY_TARGET: 0})
print("mergedDf shape", mergedDf.shape)
print("mergedDf", mergedDf.tail(5).to_string())
outputDf, debugDf = select_changed(mergedDf,
originalDf,
diff_cols=[RPT_COL_STRATEGY_TARGET],
select_cols=[RPT_COL_STRATEGY, RPT_COL_GOAL, RPT_COL_STRATEGY_TARGET],
merged_cols=[RPT_COL_STRATEGY]
)
# Bulk column is 'Spend Target', whereas report is 'Target'
outputDf.rename(columns={RPT_COL_STRATEGY_TARGET: BULK_COL_SPEND_TARGET}, inplace=True)
change_to_zero_target = (debugDf[RPT_COL_STRATEGY_TARGET + '_new'] < 1) & \
(debugDf[RPT_COL_STRATEGY_TARGET + '_orig'] > 1)
print("count of campaigns with target cleared", sum(change_to_zero_target))
print("campaigns with target cleared", tableize(debugDf.loc[change_to_zero_target].head()))
print("outputDf.shape", outputDf.shape)
print("outputDf sample")
print(tableize(outputDf.tail(10)))
## local debug
if local_dev:
output_filename = 'outputDf.csv'
outputDf.to_csv(output_filename, index=False)
print(f"Local Dev: Output written to: {output_filename}")
debug_filename = 'debugDf.csv'
debugDf.to_csv(debug_filename, index=False)
print(f"Local Dev: Debug written to: {debug_filename}")
Post generated on 2024-05-15 07:44:05 GMT