Script 1041: Budget Staging for Strategies via GSheets

Purpose:

The Python script automates the process of updating strategy spend targets by copying monthly budget data from customer-maintained Google Sheets and matching it with strategies in Marin.

To Elaborate

The script is designed to streamline the process of updating strategy spend targets by extracting monthly budget data from Google Sheets and aligning it with corresponding strategies in Marin. It achieves this by matching the ‘Abbreviation’ column in the Google Sheets with the ‘Strategy’ column in Marin’s data. The script handles data cleaning, such as removing empty rows and ensuring data types are consistent, to ensure accurate budget allocations. It also identifies changes in budget targets and prepares the data for further processing or reporting. This automation helps in maintaining accurate and up-to-date budget allocations, reducing manual errors, and saving time for users managing large datasets.

Walking Through the Code

  1. Local Mode Configuration:
    • The script begins by setting up configurations for local execution, including loading necessary libraries and data from a pickle file if not running on a server.
    • User changeable parameters include download_preview_input and pickle_path.
  2. Data Loading and Initialization:
    • The script checks if it is running on a server or locally and loads the dataSourceDict from a pickle file if local.
    • It initializes the primary data source (inputDf) and reference data source (gSheetsDf) from the loaded data.
  3. Current Month Budget Extraction:
    • The script calculates the column key for the current month based on today’s date and extracts the relevant budget data from Google Sheets.
    • It renames columns to align with the expected format and cleans up the data by removing empty rows and ensuring correct data types.
  4. Input Data Cleanup:
    • The script cleans the input data by converting necessary columns to strings, filtering out non-budget strategies, and filling missing values.
    • It prepares a copy of the cleaned data for later comparison.
  5. Data Merging and Comparison:
    • The script merges the cleaned input data with the current month’s budget data, filling missing targets with zero.
    • It uses a utility function to identify changes in strategy targets and prepares the output data for further processing.
  6. Output Preparation:
    • The script renames columns in the output data to match the expected format and identifies campaigns with cleared targets.
    • If running locally, it writes the output and debug data to CSV files for review.

Vitals

  • Script ID : 1041
  • Client ID / Customer ID: 1306926629 / 60270083
  • Action Type: Bulk Upload (Preview)
  • Item Changed: Strategy
  • Output Columns: Strategy, Goal
  • Linked Datasource: M1 Report
  • Reference Datasource: Google Sheets
  • Owner: dwaidhas@marinsoftware.com (dwaidhas@marinsoftware.com)
  • Created by dwaidhas@marinsoftware.com on 2024-04-30 19:36
  • Last Updated by Mingxia Wu on 2025-02-21 07:07
> See it in Action

Python Code

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
##
## name: Strategy Target Staging - GSheets - All Campus
## description:
##  Copy Program Budgets from staging GSheets to update Strategy Spend Targets
##  Use GSheets 'Abbrevation' column to match with 'Strategy'
## 
## author: Michael S. Huang, Dana Waidhas
## created: 2024-03-15
## 

########### START - Local Mode Config ###########
# Step 1: Uncomment download_preview_input flag and run Preview successfully with the Datasources you want
download_preview_input=False
# Step 2: In MarinOne, go to Scripts -> Preview -> Logs, download 'dataSourceDict' pickle file, and update pickle_path below
# pickle_path = ''
pickle_path = '/Users/mhuang/Downloads/pickle/allcampus_budget_staging_20240507_with_goal.pkl'
# Step 3: Copy this script into local IDE with Python virtual env loaded with pandas and numpy.
# Step 4: Run locally with below code to init dataSourceDict

# determine if code is running on server or locally
def is_executing_on_server():
    try:
        # Attempt to access a known restricted builtin
        dict_items = dataSourceDict.items()
        return True
    except NameError:
        # NameError: dataSourceDict object is missing (indicating not on server)
        return False

local_dev = False

if is_executing_on_server():
    print("Code is executing on server. Skip init.")
elif len(pickle_path) > 3:
    print("Code is NOT executing on server. Doing init.")
    local_dev = True
    # load dataSourceDict via pickled file
    import pickle
    dataSourceDict = pickle.load(open(pickle_path, 'rb'))

    # print shape and first 5 rows for each entry in dataSourceDict
    for key, value in dataSourceDict.items():
        print(f"Shape of dataSourceDict[{key}]: {value.shape}")
        print(f"First 5 rows of dataSourceDict[{key}]:\n{value.head(5)}")

    # set outputDf same as inputDf
    outputDf = dataSourceDict["1"].copy()

    # setup timezone
    import datetime
    CLIENT_TIMEZONE = datetime.timezone(datetime.timedelta(hours=+8))

    # import pandas
    import pandas as pd
    import numpy as np

    # import Marin util functions
    from marin_scripts_utils import tableize, select_changed
else:
    print("Running locally but no pickle path defined. dataSourceDict not loaded.")
    exit(1)
########### END - Local Mode Setup ###########

# dial forward to preview next month budgets
# CLIENT_TIMEZONE = datetime.timezone(datetime.timedelta(hours=+8))

# today in client timezone
today = datetime.datetime.now(CLIENT_TIMEZONE).date()

# primary data source and columns
inputDf = dataSourceDict["1"]
RPT_COL_STRATEGY = 'Strategy'
RPT_COL_CONSTRAINT = 'Constraint Type'
RPT_COL_GOAL = 'Goal'
RPT_COL_STRATEGY_TARGET = 'Target'

# reference data source and columns
gSheetsDf = dataSourceDict["2_1"]  # gsheets dataframe (first sheet)
# To access 10th row of Column C, use gSheetsDf.loc[10, 'C']

# output columns and initial values
BULK_COL_GOAL = 'Goal'
BULK_COL_SPEND_TARGET = 'Spend Target'
outputDf[BULK_COL_GOAL] = "<<YOUR VALUE>>"
outputDf[BULK_COL_SPEND_TARGET] = "<<YOUR VALUE>>"

########### User Code Starts Here ###########

### Load Current Month Budgets from GSheets and rename

# For debugging, set arbitrary date
# today = datetime.date(2024, 4, 2)

# Construct column key by mapping current month to canonical column name
# Assume column F is January, G is February, H is March, Q is Dec, etc. In terms of integer months, F=1, G=2, H=3,.., Q=12.
column_key = chr(64 + today.month + 5)  
print(f"GSheets column key for current month: {today.strftime(('%B'))} => {column_key}")

# load current month
# - skip first 3 rows via .loc[2:]
# - 'Abbreviation' is column T
# - budgets from January to December are on columns F to Q
current_month_budgets = dataSourceDict['2_1'] \
                        .loc[2:, ['T', column_key]] \
                        .rename(columns={ \
                            'T' : RPT_COL_STRATEGY, \
                            column_key : RPT_COL_STRATEGY_TARGET \
                        })

print("current_month_budgets.shape", current_month_budgets.shape)
print("current_month_budgets.info", current_month_budgets.info())
print("current_month_budgets first 10 rows", current_month_budgets.head(10))

### cleanup Budget values from GSheets
# remove empty strategy rows
current_month_budgets = current_month_budgets.loc[current_month_budgets[RPT_COL_STRATEGY].notnull()]
# make sure Strategy is STR
current_month_budgets[RPT_COL_STRATEGY] = current_month_budgets[RPT_COL_STRATEGY].astype(str)
# make sure target is float; remove prefix if not
# note: can't check for `object` since not imported, so use `0` instead
if current_month_budgets[RPT_COL_STRATEGY_TARGET].dtype == 'O':
    current_month_budgets[RPT_COL_STRATEGY_TARGET] = current_month_budgets[RPT_COL_STRATEGY_TARGET] \
                                    .str.replace('US$', '', case=False, regex=False) \
                                    .str.replace('$', '', case=False, regex=False) \
                                    .str.replace(',', '') \
                                    .str.strip() \
                                    .astype(float)

# remove empty target rows
has_strategy = current_month_budgets[RPT_COL_STRATEGY].notnull() & \
                (current_month_budgets[RPT_COL_STRATEGY].str.len() > 3)
has_strategy_target = current_month_budgets[RPT_COL_STRATEGY_TARGET].notnull() & \
                (current_month_budgets[RPT_COL_STRATEGY_TARGET] > 0.5)
current_month_budgets = current_month_budgets.loc[has_strategy & has_strategy_target]

print("after cleanup gsheets")
print("current_month_budgets.shape", current_month_budgets.shape)
print("current_month_budgets.info", current_month_budgets.info())
print(current_month_budgets.head().to_string())

### Cleanup input

# Convert RPT_COL_STRATEGY_TARGET to numeric, coercing errors to NaN
inputDf[RPT_COL_STRATEGY_TARGET] = pd.to_numeric(inputDf[RPT_COL_STRATEGY_TARGET], errors='coerce')
# Replace NaN values with 0.0 if that's the desired behavior
inputDf[RPT_COL_STRATEGY_TARGET].fillna(0.0, inplace=True)

# convert Strategy column into string and remove blank or non-numeric rows
inputDf[RPT_COL_STRATEGY] = inputDf[RPT_COL_STRATEGY].astype(str)
valid_abbrev = inputDf[RPT_COL_STRATEGY].str.len() > 3

# convert Constraint column into string
# NB: Bulk needs to include Goal column in order to change Spend Target, hence, 
#  remove non-Budget strategies just in case.
inputDf[RPT_COL_CONSTRAINT] = inputDf[RPT_COL_CONSTRAINT].astype(str)
budget_constraint = inputDf[RPT_COL_CONSTRAINT] == 'Spend'

# apply cleanup filters
inputDf = inputDf.loc[valid_abbrev & budget_constraint]

print("after cleanup inputDf")
print("inputDf.shape", inputDf.shape)
print("inputDf.info", inputDf.info())

# fill in missing target as 0 for comparison later
inputDf = inputDf.fillna(value={RPT_COL_STRATEGY_TARGET: 0})

# make copy of input for use with select_changed
originalDf = inputDf.copy()

### Merge inputDf with current_month_budgets, and fill in missing target as 0
mergedDf = inputDf.merge(current_month_budgets, on=RPT_COL_STRATEGY, how='left', suffixes=('_old', '')) \
                  .fillna(value={RPT_COL_STRATEGY_TARGET: 0})

print("mergedDf shape", mergedDf.shape)
print("mergedDf", mergedDf.tail(5).to_string())

outputDf, debugDf = select_changed(mergedDf, 
                          originalDf,
                          diff_cols=[RPT_COL_STRATEGY_TARGET],
                          select_cols=[RPT_COL_STRATEGY, RPT_COL_GOAL, RPT_COL_STRATEGY_TARGET],
                          merged_cols=[RPT_COL_STRATEGY]
                          )

# Bulk column is 'Spend Target', whereas report is 'Target'
outputDf.rename(columns={RPT_COL_STRATEGY_TARGET: BULK_COL_SPEND_TARGET}, inplace=True)


change_to_zero_target = (debugDf[RPT_COL_STRATEGY_TARGET + '_new'] < 1) & \
                        (debugDf[RPT_COL_STRATEGY_TARGET + '_orig'] > 1)
print("count of campaigns with target cleared", sum(change_to_zero_target))
print("campaigns with target cleared", tableize(debugDf.loc[change_to_zero_target].head()))

print("outputDf.shape", outputDf.shape)
print("outputDf sample")
print(tableize(outputDf.tail(10)))

## local debug
if local_dev:
    output_filename = 'outputDf.csv'
    outputDf.to_csv(output_filename, index=False)
    print(f"Local Dev: Output written to: {output_filename}")

    debug_filename = 'debugDf.csv'
    debugDf.to_csv(debug_filename, index=False)
    print(f"Local Dev: Debug written to: {debug_filename}")

Post generated on 2025-03-11 01:25:51 GMT

comments powered by Disqus