Script 1007: Intraday Budget Cap Based on Strategy Target
Purpose
The Python script manages campaign budgets by pausing campaigns when the month-to-date (MTD) spend approaches or exceeds the monthly budget set in a strategy.
To Elaborate
The script is designed to automate the management of advertising campaigns by monitoring their spending against predefined monthly budgets. It pauses campaigns when their MTD spending nears or exceeds the allocated monthly budget, as specified in a strategy. This is achieved by calculating the total spend for each budget group and comparing it to the monthly budget, adjusted by a safety margin to account for system lags and non-linear spending patterns. If a campaign’s spending surpasses the threshold, it is recommended for pausing. Conversely, campaigns that have been paused but are now under budget are recommended for reactivation. The script ensures that only campaigns with significant changes in status are updated, optimizing resource allocation and preventing overspending.
Walking Through the Code
- Configuration and Setup:
- The script begins by defining a configurable parameter,
BUDGET_CAP_SAFETY_MARGIN
, which sets a safety margin for budget cap calculations. - It checks whether the script is running on a server or locally, loading necessary data from a pickle file if running locally.
- The script begins by defining a configurable parameter,
- Data Preparation:
- The script processes the input data by removing duplicate campaigns and summing their costs.
- It ensures data types are consistent, converting budget columns to numeric and date columns to date types, and fills missing values with blanks.
- Budget Monitoring:
- The script calculates the MTD spend for each budget group and identifies campaigns that exceed their monthly budget by the safety margin.
- It flags these campaigns for pausing and updates their recommended status.
- Campaign Status Management:
- The script identifies campaigns that can be resumed if their spending is below the budget threshold and they have a pause date.
- It updates the campaign status and pause date accordingly, ensuring only campaigns with status changes are processed.
- Output Preparation:
- The script cleans up any orphaned pause dates and selects only the changed rows for output.
- It renames columns for consistency and writes the output to a CSV file if running locally.
Vitals
- Script ID : 1007
- Client ID / Customer ID: 1306926629 / 60270083
- Action Type: Bulk Upload
- Item Changed: Campaign
- Output Columns: Account, Campaign, Status, Auto Pause Date, Auto Pause Rec. Campaign Status
- Linked Datasource: M1 Report
- Reference Datasource: None
- Owner: ascott@marinsoftware.com (ascott@marinsoftware.com)
- Created by ascott@marinsoftware.com on 2024-04-26 20:38
- Last Updated by Michael Huang on 2024-10-02 08:58
> See it in Action
Python Code
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
### name: Intraday Budget Cap via Strategy
## description:
## Pause campaigns when MTD spend reaches Monthly Budget (stored in Strategy)
##
## author: Adam Scott
## created: 2024-04-26
##
##### Configurable Param #####
# Define how close MTD spend can get to Monthly Budget before being Paused
# - compensates for lag in system
# - compendates for non-linearity in intraday spend
BUDGET_CAP_SAFETY_MARGIN = 0.01 # set to 1%
##############################
########### START - Local Mode Config ###########
# Step 1: Uncomment download_preview_input flag and run Preview successfully with the Datasources you want
download_preview_input=False
# Step 2: In MarinOne, go to Scripts -> Preview -> Logs, download 'dataSourceDict' pickle file, and update pickle_path below
pickle_path = '/Users/mhuang/Downloads/pickle/allcampus_intraday_budget_cap_20241002_2.pkl'
# Step 3: Copy this script into local IDE with Python virtual env loaded with pandas and numpy.
# Step 4: Run locally with below code to init dataSourceDict
# determine if code is running on server or locally
def is_executing_on_server():
try:
# Attempt to access a known restricted builtin
dict_items = dataSourceDict.items()
return True
except NameError:
# NameError: dataSourceDict object is missing (indicating not on server)
return False
local_dev = False
if is_executing_on_server():
print("Code is executing on server. Skip init.")
elif len(pickle_path) > 3:
print("Code is NOT executing on server. Doing init.")
local_dev = True
# load dataSourceDict via pickled file
import pickle
dataSourceDict = pickle.load(open(pickle_path, 'rb'))
# print shape and first 5 rows for each entry in dataSourceDict
for key, value in dataSourceDict.items():
print(f"Shape of dataSourceDict[{key}]: {value.shape}")
# print(f"First 5 rows of dataSourceDict[{key}]:\n{value.head(5)}")
# set outputDf same as inputDf
inputDf = dataSourceDict["1"]
outputDf = inputDf.copy()
# setup timezone
import datetime
# Chicago Timezone is GMT-5. Adjust as needed.
CLIENT_TIMEZONE = datetime.timezone(datetime.timedelta(hours=-5))
# import pandas
import pandas as pd
import numpy as np
# Printing out the version of Python, Pandas and Numpy
# import sys
# python_version = sys.version
# pandas_version = pd.__version__
# numpy_version = np.__version__
# print(f"python version: {python_version}")
# print(f"pandas version: {pandas_version}")
# print(f"numpy version: {numpy_version}")
# other imports
import re
import urllib
# import Marin util functions
from marin_scripts_utils import tableize, select_changed
else:
print("Running locally but no pickle path defined. dataSourceDict not loaded.")
exit(1)
########### END - Local Mode Setup ###########
today = datetime.datetime.now(CLIENT_TIMEZONE).date()
# primary data source and columns
inputDf = dataSourceDict["1"]
RPT_COL_ACCOUNT = 'Account'
RPT_COL_CAMPAIGN = 'Campaign'
RPT_COL_CAMPAIGN_STATUS = 'Campaign Status'
RPT_COL_PUB_COST = 'Pub. Cost $'
RPT_COL_AUTO_PAUSE_STATUS = 'Auto Pause Status'
RPT_COL_BUDGET_GROUP = 'Strategy'
RPT_COL_GROUP_MONTHLY_BUDGET = 'Strategy Target'
RPT_COL_PAUSE_DATE = 'Auto Pause Date'
RPT_COL_RECOMMENDED_STATUS = 'Auto Pause Rec. Campaign Status'
# output columns and initial values
BULK_COL_ACCOUNT = 'Account'
BULK_COL_CAMPAIGN = 'Campaign'
BULK_COL_STATUS = 'Status'
BULK_COL_SBA_PAUSE_DATE = 'Auto Pause Date'
BULK_COL_SBA_RECOMMENDED_STATUS = 'Auto Pause Rec. Campaign Status'
originalDf = dataSourceDict["1"]
# Workaround: remove duplicate Meta campaigns via Group By and sum Pub Cost
originalDf = originalDf.groupby([RPT_COL_ACCOUNT, RPT_COL_CAMPAIGN], as_index=False).agg({
RPT_COL_PUB_COST: 'sum',
RPT_COL_CAMPAIGN_STATUS: 'first',
RPT_COL_AUTO_PAUSE_STATUS: 'first',
RPT_COL_BUDGET_GROUP: 'first',
RPT_COL_GROUP_MONTHLY_BUDGET: 'first',
RPT_COL_PAUSE_DATE: 'first',
RPT_COL_RECOMMENDED_STATUS: 'first'
})
# Make inputDf a copy of original to keep dataSourceDict pristine
inputDf = originalDf.copy()
# define some intermediate columns
COL_MTD_BUDGET_GROUP_SPEND = 'mtd_budget_group_spend'
# define Status values
VAL_STATUS_ACTIVE = 'Active'
VAL_STATUS_PAUSED = 'Paused'
VAL_BLANK = ''
print("inputDf shape", inputDf.shape)
print("inputDf info", inputDf.info())
## force expected types
# Convert RPT_COL_SBA_MONTHLY_BUDGET to numeric, coercing errors to NaN
inputDf[RPT_COL_GROUP_MONTHLY_BUDGET] = pd.to_numeric(inputDf[RPT_COL_GROUP_MONTHLY_BUDGET], errors='coerce')
# Replace NaN values with 0.0 if that's the desired behavior
inputDf[RPT_COL_GROUP_MONTHLY_BUDGET].fillna(0.0, inplace=True)
# Force RPT_COL_PAUSE_DATE to be Date type
inputDf[RPT_COL_PAUSE_DATE] = pd.to_datetime(inputDf[RPT_COL_PAUSE_DATE], errors='coerce').dt.date
# HACK: replace nan with empty strings so comparison doesn't fail
inputDf.fillna(VAL_BLANK, inplace=True)
# Clear out old Rec Status so they don't get trafficked
inputDf[RPT_COL_RECOMMENDED_STATUS] = VAL_BLANK
# Calculate MTD Budget Group Spend
inputDf[COL_MTD_BUDGET_GROUP_SPEND] = inputDf.groupby(RPT_COL_BUDGET_GROUP)[RPT_COL_PUB_COST].transform('sum')
# Recommend to Pause camapigns with MTD Budget Group Spend over Monthly Budget (by a margin)
has_monthly_group_budget = inputDf[RPT_COL_GROUP_MONTHLY_BUDGET] > 0.0
over_spent_campaigns = inputDf[COL_MTD_BUDGET_GROUP_SPEND] >= inputDf[RPT_COL_GROUP_MONTHLY_BUDGET] * (1 - BUDGET_CAP_SAFETY_MARGIN)
campaigns_to_pause = has_monthly_group_budget & over_spent_campaigns
inputDf.loc[campaigns_to_pause, 'pause'] = 1
print(f"campaigns_to_pause count: {sum(campaigns_to_pause)}")
if campaigns_to_pause.any():
print("campaigns_to_pause campaigns", tableize(inputDf.loc[campaigns_to_pause].head()))
inputDf.loc[ campaigns_to_pause, \
RPT_COL_RECOMMENDED_STATUS \
] = VAL_STATUS_PAUSED
# Recommend to reactivate campaigns with MTD Budget Group Spend under Monthly Group Budget (by a margin)
# but limited to campaigns with SBA Pause Date populated 10 digit date
under_spent_campaigns = inputDf[COL_MTD_BUDGET_GROUP_SPEND] < inputDf[RPT_COL_GROUP_MONTHLY_BUDGET] * (1 - BUDGET_CAP_SAFETY_MARGIN)
sba_paused_campaigns = inputDf[RPT_COL_PAUSE_DATE].astype('str').str.len() >= 10
campaigns_to_resume = under_spent_campaigns & sba_paused_campaigns
inputDf.loc[campaigns_to_resume, 'resume'] = 1
print(f"campaigns_to_resume count: {sum(campaigns_to_resume)}")
if campaigns_to_resume.any():
print("campaigns_to_resume", tableize(inputDf.loc[campaigns_to_resume].head()))
inputDf.loc[ campaigns_to_resume, \
RPT_COL_RECOMMENDED_STATUS \
] = VAL_STATUS_ACTIVE
## Actually taffic PAUSE
should_traffic = inputDf[RPT_COL_AUTO_PAUSE_STATUS].astype(str).str.lower() == 'traffic'
should_traffic_pause = should_traffic & \
campaigns_to_pause & \
(inputDf[RPT_COL_RECOMMENDED_STATUS] == VAL_STATUS_PAUSED) & \
(inputDf[RPT_COL_RECOMMENDED_STATUS] != inputDf[RPT_COL_CAMPAIGN_STATUS])
inputDf.loc[should_traffic_pause, 'traffic_pause'] = 1
print(f"should_traffic_pause count: {sum(should_traffic_pause)}")
if should_traffic_pause.any():
print("should_traffic_pause campaigns", tableize(inputDf.loc[should_traffic_pause].head()))
inputDf.loc[should_traffic_pause, RPT_COL_CAMPAIGN_STATUS] = inputDf.loc[should_traffic_pause, RPT_COL_RECOMMENDED_STATUS]
inputDf.loc[should_traffic_pause, RPT_COL_PAUSE_DATE] = today.strftime('%Y-%m-%d')
## Actually taffic RESUME
should_traffic_resume = should_traffic & \
campaigns_to_resume & \
sba_paused_campaigns & \
(inputDf[RPT_COL_RECOMMENDED_STATUS] == VAL_STATUS_ACTIVE) & \
(inputDf[RPT_COL_RECOMMENDED_STATUS] != inputDf[RPT_COL_CAMPAIGN_STATUS])
inputDf.loc[should_traffic_resume, 'traffic_resume'] = 1
print(f"should_traffic_resume count: {sum(should_traffic_resume)}")
if should_traffic_resume.any():
print("should_traffic_resume campaigns", tableize(inputDf.loc[should_traffic_resume].head()))
inputDf.loc[should_traffic_resume, RPT_COL_CAMPAIGN_STATUS] = inputDf.loc[should_traffic_resume, RPT_COL_RECOMMENDED_STATUS]
inputDf.loc[should_traffic_resume, RPT_COL_PAUSE_DATE] = VAL_BLANK
## Prepare Output
# Cleanup. RPT_COL_PAUSE_DATE is a marker to indicate this Script actioned the Pause. If not Paused, for whatever reason, then a non-blank RPT_COL_PAUSE_DATE causes confusion.
orphan_pause_date = sba_paused_campaigns & (inputDf[RPT_COL_CAMPAIGN_STATUS] == VAL_STATUS_ACTIVE)
inputDf.loc[orphan_pause_date, RPT_COL_PAUSE_DATE] = VAL_BLANK
print(f"Cleaned up {orphan_pause_date.sum()} orphaned {RPT_COL_PAUSE_DATE}")
# only include changed rows in bulk file
print(f"select_changed with inputDf shape {inputDf.shape} and originalDf shape {originalDf.shape}")
(outputDf, debugDf) = select_changed(inputDf, \
originalDf, \
diff_cols = [ \
RPT_COL_CAMPAIGN_STATUS, \
RPT_COL_RECOMMENDED_STATUS, \
], \
select_cols = [ \
RPT_COL_ACCOUNT, \
RPT_COL_CAMPAIGN, \
RPT_COL_CAMPAIGN_STATUS, \
RPT_COL_RECOMMENDED_STATUS, \
RPT_COL_PAUSE_DATE, \
], \
merged_cols=[RPT_COL_ACCOUNT, RPT_COL_CAMPAIGN] \
)
changed = (debugDf[RPT_COL_CAMPAIGN_STATUS+'_new'] != debugDf[RPT_COL_CAMPAIGN_STATUS+'_orig']) | \
(debugDf[RPT_COL_RECOMMENDED_STATUS+'_new'] != debugDf[RPT_COL_RECOMMENDED_STATUS+'_orig'])
debugDf.loc[changed, 'changed'] = 1
print(f"changed count: {sum(changed)}")
if changed.any():
print("changed campaigns", tableize(debugDf.loc[changed].head()))
# remember to use Bulk column header for Status
outputDf = outputDf.rename(columns = { \
RPT_COL_CAMPAIGN_STATUS: BULK_COL_STATUS \
})
print("outputDf shape", outputDf.shape)
print("outputDf", tableize(outputDf.tail(5)))
## local debug
if local_dev:
output_filename = 'outputDf.csv'
outputDf.to_csv(output_filename, index=False)
print(f"Local Dev: Output written to: {output_filename}")
debug_filename = 'debugDf.csv'
debugDf.to_csv(debug_filename, index=False)
print(f"Local Dev: Debug written to: {debug_filename}")
Post generated on 2024-11-27 06:58:46 GMT